Energy Optimization for Software-Defined Data Center Networks Based on Flow Allocation Strategies

Nowadays, energy consumption has become an important issue in data center networks. The most promising energy-saving schemes are those that shut down unnecessary network devices and links while meeting the demand of traffic loads. Existing research mainly focuses on the strategies of energy savings...

Full description

Bibliographic Details
Main Authors: Zebin Lu, Junru Lei, Yihao He, Zhengfa Li, Shuhua Deng, Xieping Gao
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/8/9/1014
Description
Summary:Nowadays, energy consumption has become an important issue in data center networks. The most promising energy-saving schemes are those that shut down unnecessary network devices and links while meeting the demand of traffic loads. Existing research mainly focuses on the strategies of energy savings in software-defined data center networks (SD-DCN). Few studies have considered both energy savings and the quality of service (QoS) of the traffic load. In this paper, we investigate the energy savings guaranteed by traffic load satisfaction ratio. To ensure the minimum-power consumption in data centers, we formulate the SD-DCN energy consumption optimization problem as an Integer Linear Programming model. To achieve a high success rate for traffic transmission, we propose three flow scheduling strategies. On this foundation, we propose a strategy-based Minimum Energy Consumption (MEC) heuristic algorithm to ensure the QoS satisfaction ratio in the process of energy optimization. The results show that our algorithm can save energy efficiently under the conditions of low traffic load and medium traffic load. Under high traffic load, our algorithm can achieve better network performance than existing solutions in terms of quality of service satisfaction ratio of flow allocation.
ISSN:2079-9292