Automated Health Estimation of <i>Capsicum annuum</i> L. Crops by Means of Deep Learning and RGB Aerial Images

Recently, the use of small UAVs for monitoring agricultural land areas has been increasingly used by agricultural producers in order to improve crop yields. However, correctly interpreting the collected imagery data is still a challenging task. In this study, an automated pipeline for monitoring <...

Full description

Bibliographic Details
Main Authors: Jesús A. Sosa-Herrera, Nohemi Alvarez-Jarquin, Nestor M. Cid-Garcia, Daniela J. López-Araujo, Moisés R. Vallejo-Pérez
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/19/4943
_version_ 1827653162721345536
author Jesús A. Sosa-Herrera
Nohemi Alvarez-Jarquin
Nestor M. Cid-Garcia
Daniela J. López-Araujo
Moisés R. Vallejo-Pérez
author_facet Jesús A. Sosa-Herrera
Nohemi Alvarez-Jarquin
Nestor M. Cid-Garcia
Daniela J. López-Araujo
Moisés R. Vallejo-Pérez
author_sort Jesús A. Sosa-Herrera
collection DOAJ
description Recently, the use of small UAVs for monitoring agricultural land areas has been increasingly used by agricultural producers in order to improve crop yields. However, correctly interpreting the collected imagery data is still a challenging task. In this study, an automated pipeline for monitoring <i>C. Annuum</i> crops based on a deep learning model is implemented. The system is capable of performing inferences on the health status of individual plants, and to determine their locations and shapes in a georeferenced orthomosaic. Accuracy achieved on the classification task was 94.5. AP values among classes were in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>63</mn><mo>,</mo><mn>100</mn><mo>]</mo></mrow></semantics></math></inline-formula> for plant location boxes, and in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>80</mn><mo>]</mo></mrow></semantics></math></inline-formula> for foliar area predictions. The methodology requires only RGB images, and so, it can be replicated for the monitoring of other types of crops by only employing consumer-grade UAVs. A comparison with random forest and large-scale mean shift segmentation methods which use predetermined features is presented. NDVI results obtained with multispectral equipment are also included.
first_indexed 2024-03-09T21:13:08Z
format Article
id doaj.art-8f745b0ba6c14b18bbd00f913e34c5a8
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-09T21:13:08Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-8f745b0ba6c14b18bbd00f913e34c5a82023-11-23T21:41:18ZengMDPI AGRemote Sensing2072-42922022-10-011419494310.3390/rs14194943Automated Health Estimation of <i>Capsicum annuum</i> L. Crops by Means of Deep Learning and RGB Aerial ImagesJesús A. Sosa-Herrera0Nohemi Alvarez-Jarquin1Nestor M. Cid-Garcia2Daniela J. López-Araujo3Moisés R. Vallejo-Pérez4Laboratorio Nacional de Geointeligencia, CONACYT-Centro de Investigación En Ciencias de Información Geospacial, Aguascalientes 20313, MexicoLaboratorio Nacional de Geointeligencia, CONACYT-Centro de Investigación En Ciencias de Información Geospacial, Aguascalientes 20313, MexicoLaboratorio Nacional de Geointeligencia, CONACYT-Centro de Investigación En Ciencias de Información Geospacial, Aguascalientes 20313, MexicoLaboratorio Nacional de Geointeligencia, CONACYT-Centro de Investigación En Ciencias de Información Geospacial, Aguascalientes 20313, MexicoCoordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), CONACYT-Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, MexicoRecently, the use of small UAVs for monitoring agricultural land areas has been increasingly used by agricultural producers in order to improve crop yields. However, correctly interpreting the collected imagery data is still a challenging task. In this study, an automated pipeline for monitoring <i>C. Annuum</i> crops based on a deep learning model is implemented. The system is capable of performing inferences on the health status of individual plants, and to determine their locations and shapes in a georeferenced orthomosaic. Accuracy achieved on the classification task was 94.5. AP values among classes were in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>63</mn><mo>,</mo><mn>100</mn><mo>]</mo></mrow></semantics></math></inline-formula> for plant location boxes, and in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>80</mn><mo>]</mo></mrow></semantics></math></inline-formula> for foliar area predictions. The methodology requires only RGB images, and so, it can be replicated for the monitoring of other types of crops by only employing consumer-grade UAVs. A comparison with random forest and large-scale mean shift segmentation methods which use predetermined features is presented. NDVI results obtained with multispectral equipment are also included.https://www.mdpi.com/2072-4292/14/19/4943deep learningMask RCNNprecision agricultureUAVs
spellingShingle Jesús A. Sosa-Herrera
Nohemi Alvarez-Jarquin
Nestor M. Cid-Garcia
Daniela J. López-Araujo
Moisés R. Vallejo-Pérez
Automated Health Estimation of <i>Capsicum annuum</i> L. Crops by Means of Deep Learning and RGB Aerial Images
Remote Sensing
deep learning
Mask RCNN
precision agriculture
UAVs
title Automated Health Estimation of <i>Capsicum annuum</i> L. Crops by Means of Deep Learning and RGB Aerial Images
title_full Automated Health Estimation of <i>Capsicum annuum</i> L. Crops by Means of Deep Learning and RGB Aerial Images
title_fullStr Automated Health Estimation of <i>Capsicum annuum</i> L. Crops by Means of Deep Learning and RGB Aerial Images
title_full_unstemmed Automated Health Estimation of <i>Capsicum annuum</i> L. Crops by Means of Deep Learning and RGB Aerial Images
title_short Automated Health Estimation of <i>Capsicum annuum</i> L. Crops by Means of Deep Learning and RGB Aerial Images
title_sort automated health estimation of i capsicum annuum i l crops by means of deep learning and rgb aerial images
topic deep learning
Mask RCNN
precision agriculture
UAVs
url https://www.mdpi.com/2072-4292/14/19/4943
work_keys_str_mv AT jesusasosaherrera automatedhealthestimationoficapsicumannuumilcropsbymeansofdeeplearningandrgbaerialimages
AT nohemialvarezjarquin automatedhealthestimationoficapsicumannuumilcropsbymeansofdeeplearningandrgbaerialimages
AT nestormcidgarcia automatedhealthestimationoficapsicumannuumilcropsbymeansofdeeplearningandrgbaerialimages
AT danielajlopezaraujo automatedhealthestimationoficapsicumannuumilcropsbymeansofdeeplearningandrgbaerialimages
AT moisesrvallejoperez automatedhealthestimationoficapsicumannuumilcropsbymeansofdeeplearningandrgbaerialimages