IFN-γ Induces Histone 3 Lysine 27 Trimethylation in a Small Subset of Promoters to Stably Silence Gene Expression in Human Macrophages

The mechanisms by which IFN-γ activates expression of interferon-stimulated genes that have inflammatory and host defense functions are well understood. In contrast, little is known about how IFN-γ represses gene expression. By using transcriptomic and epigenomic analysis, we found that stable repre...

Full description

Bibliographic Details
Main Authors: Yu Qiao, Kyuho Kang, Eugenia Giannopoulou, Celeste Fang, Lionel B. Ivashkiv
Format: Article
Language:English
Published: Elsevier 2016-09-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124716311329
Description
Summary:The mechanisms by which IFN-γ activates expression of interferon-stimulated genes that have inflammatory and host defense functions are well understood. In contrast, little is known about how IFN-γ represses gene expression. By using transcriptomic and epigenomic analysis, we found that stable repression of a small group of genes by IFN-γ is associated with recruitment of the histone methyltransferase EZH2 and deposition of the negative mark histone 3 lysine 27 trimethylation (H3K27me3) at their promoters. Repressed genes included MERTK, PPARG, and RANK, which have anti-inflammatory functions and promote osteoclast differentiation. Gene repression and H3K27me3 persisted after IFN-γ signaling was terminated, and these silenced genes were no longer responsive to glucocorticoids, IL-4, and M-CSF. These results identify cytokine-induced H3K27 trimethylation as a mechanism that stabilizes gene silencing in macrophages. IFN-γ-induced macrophage activation is thus reinforced by a chromatin-based mechanism that blocks anti-inflammatory and opposing pathways.
ISSN:2211-1247