Decoding 122-type iron-based superconductors: A comprehensive simulation of phase diagrams and transition temperatures

Iron-based superconductors, a cornerstone of low-temperature physics, have been the subject of numerous theoretical models aimed at deciphering their complex behavior. In this study, we present a comprehensive approach that amalgamates several existing models and incorporates experimental data to si...

Full description

Bibliographic Details
Main Authors: Chi Ho Wong, Rolf Lortz
Format: Article
Language:English
Published: American Physical Society 2024-01-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.6.013121
Description
Summary:Iron-based superconductors, a cornerstone of low-temperature physics, have been the subject of numerous theoretical models aimed at deciphering their complex behavior. In this study, we present a comprehensive approach that amalgamates several existing models and incorporates experimental data to simulate the superconducting phase diagrams of the principal “122-type” iron-based compounds. Our model considers a multitude of factors including the momentum dependence of the superconducting gap, spin-orbital coupling, antiferromagnetism, spin-density wave, induced XY potential on the tetrahedral structure, and electron-phonon coupling. We have refined the electron-phonon scattering matrix using experimental angle-resolved photoemission spectroscopy data, ensuring that relevant electrons pertinent to iron-based superconductivity are accounted for. This innovative approach allows us to calculate theoretical critical temperature (T_{c}) values for Ba_{1−x}K_{x}Fe_{2}As_{2}, CaFe_{2}As_{2}, and SrFe_{2}As_{2} as functions of pressure. These calculated values exhibit remarkable agreement with experimental findings. Furthermore, our model predicts that MgFe_{2}As_{2} remains nonsuperconducting irrespective of the applied pressure. Given that 122-type superconductivity at low pressure or low doping concentration has been experimentally validated, our work serves as a powerful predictive tool for generating superconducting phase diagrams at high pressure empirically. This study underscores that the high transition temperatures and the precise doping and pressure dependence of iron-based superconductors are intrinsically linked to an intertwined mechanism involving a strong interplay between structural, magnetic, and electronic degrees of freedom.
ISSN:2643-1564