Reliability Assessment of a Fault-Tolerant PV Multistring Inverter

In photovoltaic (PV) systems, the reliability of the system components, especially the power converters, is a major concern in obtaining cost effective solutions. In order to guarantee service continuity in the case of failure of elements of the PV converter, in particular, semiconductor switching d...

Full description

Bibliographic Details
Main Authors: Hugues Renaudineau, Pol Paradell-Solà, Lluís Trilla, Alber Filba-Martinez, David Cardoner, José Luis Domínguez-García
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/24/6525
Description
Summary:In photovoltaic (PV) systems, the reliability of the system components, especially the power converters, is a major concern in obtaining cost effective solutions. In order to guarantee service continuity in the case of failure of elements of the PV converter, in particular, semiconductor switching devices, a solution is to design power converter with fault-tolerance capability. This can be realized by aggregating hardware redundancy on an existing converter, providing the possibility of replacement of faulty elements. This paper evaluates the reliability of a fault-tolerant power electronics converter for PV multistring application. The considered fault-tolerant design includes a single redundant switching leg, which is used in order to reconfigure the structure in case of a switch failure either on DC-AC or DC-DC stages. This paper details the reliability estimation of the considered PV multistring fault-tolerant converter. Furthermore, a comparison with a conventional structure without fault-tolerant capability is provided. The results show that the introduction of a single redundant leg allows for improving the converter mean time to failure by a factor of almost two and it reduces, by half, the power loss due to system-failure shutdowns in PV applications, while only increasing the converter cost by 2–3%.
ISSN:1996-1073