A shorter proof of the distance energy of complete multipartite graphs

Caporossi, Chasser and Furtula in [Les Cahiers du GERAD (2009) G-2009-64] conjectured that the distance energy of a complete multipartite graph of order n with r ≥ 2 parts, each of size at least 2, is equal to 4(n − r). Stevanovic, Milosevic, Hic and Pokorny in [MATCH Commun. Math. Comput. Chem. 70...

Full description

Bibliographic Details
Main Author: So Wasin
Format: Article
Language:English
Published: De Gruyter 2017-01-01
Series:Special Matrices
Subjects:
Online Access:https://doi.org/10.1515/spma-2017-0005
_version_ 1818676486467485696
author So Wasin
author_facet So Wasin
author_sort So Wasin
collection DOAJ
description Caporossi, Chasser and Furtula in [Les Cahiers du GERAD (2009) G-2009-64] conjectured that the distance energy of a complete multipartite graph of order n with r ≥ 2 parts, each of size at least 2, is equal to 4(n − r). Stevanovic, Milosevic, Hic and Pokorny in [MATCH Commun. Math. Comput. Chem. 70 (2013), no. 1, 157-162.] proved the conjecture, and then Zhang in [Linear Algebra Appl. 450 (2014), 108-120.] gave another proof. We give a shorter proof of this conjecture using the interlacing inequalities of a positve semi-definite rank-1 perturbation to a real symmetric matrix.
first_indexed 2024-12-17T08:44:14Z
format Article
id doaj.art-8fbdbc19bf4640c2b6fd3d1d3068a03f
institution Directory Open Access Journal
issn 2300-7451
language English
last_indexed 2024-12-17T08:44:14Z
publishDate 2017-01-01
publisher De Gruyter
record_format Article
series Special Matrices
spelling doaj.art-8fbdbc19bf4640c2b6fd3d1d3068a03f2022-12-21T21:56:15ZengDe GruyterSpecial Matrices2300-74512017-01-0151616310.1515/spma-2017-0005spma-2017-0005A shorter proof of the distance energy of complete multipartite graphsSo Wasin0Department of Mathematics and Statistics, San Jose State University, San Jose, CA 95192, United States of AmericaCaporossi, Chasser and Furtula in [Les Cahiers du GERAD (2009) G-2009-64] conjectured that the distance energy of a complete multipartite graph of order n with r ≥ 2 parts, each of size at least 2, is equal to 4(n − r). Stevanovic, Milosevic, Hic and Pokorny in [MATCH Commun. Math. Comput. Chem. 70 (2013), no. 1, 157-162.] proved the conjecture, and then Zhang in [Linear Algebra Appl. 450 (2014), 108-120.] gave another proof. We give a shorter proof of this conjecture using the interlacing inequalities of a positve semi-definite rank-1 perturbation to a real symmetric matrix.https://doi.org/10.1515/spma-2017-0005distance energymultipartite graphinterlacing inequalities05c5015a1805c90
spellingShingle So Wasin
A shorter proof of the distance energy of complete multipartite graphs
Special Matrices
distance energy
multipartite graph
interlacing inequalities
05c50
15a18
05c90
title A shorter proof of the distance energy of complete multipartite graphs
title_full A shorter proof of the distance energy of complete multipartite graphs
title_fullStr A shorter proof of the distance energy of complete multipartite graphs
title_full_unstemmed A shorter proof of the distance energy of complete multipartite graphs
title_short A shorter proof of the distance energy of complete multipartite graphs
title_sort shorter proof of the distance energy of complete multipartite graphs
topic distance energy
multipartite graph
interlacing inequalities
05c50
15a18
05c90
url https://doi.org/10.1515/spma-2017-0005
work_keys_str_mv AT sowasin ashorterproofofthedistanceenergyofcompletemultipartitegraphs
AT sowasin shorterproofofthedistanceenergyofcompletemultipartitegraphs