Mapping Land Use and Land Cover Classes in São Paulo State, Southeast of Brazil, Using Landsat-8 OLI Multispectral Data and the Derived Spectral Indices and Fraction Images

This work aims to develop a new method to map Land Use and Land Cover (LULC) classes in the São Paulo State, Brazil, using Landsat-8 Operational Land Imager (OLI) data. The novelty of the proposed method consists of selecting the images based on the spectral and temporal characteristics of the LULC...

Full description

Bibliographic Details
Main Authors: Yosio E. Shimabukuro, Egidio Arai, Gabriel M. da Silva, Tânia B. Hoffmann, Valdete Duarte, Paulo R. Martini, Andeise Cerqueira Dutra, Guilherme Mataveli, Henrique L. G. Cassol, Marcos Adami
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/14/8/1669
_version_ 1797584707768025088
author Yosio E. Shimabukuro
Egidio Arai
Gabriel M. da Silva
Tânia B. Hoffmann
Valdete Duarte
Paulo R. Martini
Andeise Cerqueira Dutra
Guilherme Mataveli
Henrique L. G. Cassol
Marcos Adami
author_facet Yosio E. Shimabukuro
Egidio Arai
Gabriel M. da Silva
Tânia B. Hoffmann
Valdete Duarte
Paulo R. Martini
Andeise Cerqueira Dutra
Guilherme Mataveli
Henrique L. G. Cassol
Marcos Adami
author_sort Yosio E. Shimabukuro
collection DOAJ
description This work aims to develop a new method to map Land Use and Land Cover (LULC) classes in the São Paulo State, Brazil, using Landsat-8 Operational Land Imager (OLI) data. The novelty of the proposed method consists of selecting the images based on the spectral and temporal characteristics of the LULC classes. First, we defined the six classes to be mapped in the year 2020 as forest, forest plantation, water bodies, urban areas, agriculture, and pasture. Second, we visually analyzed their variability spectral characteristics over the year. Then, we pre-processed these images to highlight each LULC class. For the classification, the Random Forest algorithm available on the Google Earth Engine (GEE) platform was utilized individually for each LULC class. Afterward, we integrated the classified maps to create the final LULC map. The results revealed that forest areas are primarily concentrated in the eastern region of São Paulo, predominantly on steeper slopes, accounting for 19% of the study area. On the other hand, pasture and agriculture dominated 73% of all São Paulo’s landscape, reaching 39% and 34%, respectively. The overall accuracy of the classification achieved 89.10%, while producer and user accuracies were greater than 84.20% and 76.62%, respectively. To validate the results, we compared our findings with the MapBiomas Project classification, obtaining an overall accuracy of 85.47%. Therefore, our method demonstrates its potential to minimize classification errors and offers the advantage of facilitating post-classification editing for individual mapped classes.
first_indexed 2024-03-10T23:56:24Z
format Article
id doaj.art-8fc075b309a744629cfd64ed11aa1918
institution Directory Open Access Journal
issn 1999-4907
language English
last_indexed 2024-03-10T23:56:24Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Forests
spelling doaj.art-8fc075b309a744629cfd64ed11aa19182023-11-19T01:10:20ZengMDPI AGForests1999-49072023-08-01148166910.3390/f14081669Mapping Land Use and Land Cover Classes in São Paulo State, Southeast of Brazil, Using Landsat-8 OLI Multispectral Data and the Derived Spectral Indices and Fraction ImagesYosio E. Shimabukuro0Egidio Arai1Gabriel M. da Silva2Tânia B. Hoffmann3Valdete Duarte4Paulo R. Martini5Andeise Cerqueira Dutra6Guilherme Mataveli7Henrique L. G. Cassol8Marcos Adami9Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos 12227-010, BrazilInstituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos 12227-010, BrazilInstituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos 12227-010, BrazilInstituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos 12227-010, BrazilInstituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos 12227-010, BrazilInstituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos 12227-010, BrazilInstituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos 12227-010, BrazilInstituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos 12227-010, BrazilInstituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos 12227-010, BrazilInstituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos 12227-010, BrazilThis work aims to develop a new method to map Land Use and Land Cover (LULC) classes in the São Paulo State, Brazil, using Landsat-8 Operational Land Imager (OLI) data. The novelty of the proposed method consists of selecting the images based on the spectral and temporal characteristics of the LULC classes. First, we defined the six classes to be mapped in the year 2020 as forest, forest plantation, water bodies, urban areas, agriculture, and pasture. Second, we visually analyzed their variability spectral characteristics over the year. Then, we pre-processed these images to highlight each LULC class. For the classification, the Random Forest algorithm available on the Google Earth Engine (GEE) platform was utilized individually for each LULC class. Afterward, we integrated the classified maps to create the final LULC map. The results revealed that forest areas are primarily concentrated in the eastern region of São Paulo, predominantly on steeper slopes, accounting for 19% of the study area. On the other hand, pasture and agriculture dominated 73% of all São Paulo’s landscape, reaching 39% and 34%, respectively. The overall accuracy of the classification achieved 89.10%, while producer and user accuracies were greater than 84.20% and 76.62%, respectively. To validate the results, we compared our findings with the MapBiomas Project classification, obtaining an overall accuracy of 85.47%. Therefore, our method demonstrates its potential to minimize classification errors and offers the advantage of facilitating post-classification editing for individual mapped classes.https://www.mdpi.com/1999-4907/14/8/1669Land Use and Land Cover (LULC)forestforest plantationagriculturepastureurban
spellingShingle Yosio E. Shimabukuro
Egidio Arai
Gabriel M. da Silva
Tânia B. Hoffmann
Valdete Duarte
Paulo R. Martini
Andeise Cerqueira Dutra
Guilherme Mataveli
Henrique L. G. Cassol
Marcos Adami
Mapping Land Use and Land Cover Classes in São Paulo State, Southeast of Brazil, Using Landsat-8 OLI Multispectral Data and the Derived Spectral Indices and Fraction Images
Forests
Land Use and Land Cover (LULC)
forest
forest plantation
agriculture
pasture
urban
title Mapping Land Use and Land Cover Classes in São Paulo State, Southeast of Brazil, Using Landsat-8 OLI Multispectral Data and the Derived Spectral Indices and Fraction Images
title_full Mapping Land Use and Land Cover Classes in São Paulo State, Southeast of Brazil, Using Landsat-8 OLI Multispectral Data and the Derived Spectral Indices and Fraction Images
title_fullStr Mapping Land Use and Land Cover Classes in São Paulo State, Southeast of Brazil, Using Landsat-8 OLI Multispectral Data and the Derived Spectral Indices and Fraction Images
title_full_unstemmed Mapping Land Use and Land Cover Classes in São Paulo State, Southeast of Brazil, Using Landsat-8 OLI Multispectral Data and the Derived Spectral Indices and Fraction Images
title_short Mapping Land Use and Land Cover Classes in São Paulo State, Southeast of Brazil, Using Landsat-8 OLI Multispectral Data and the Derived Spectral Indices and Fraction Images
title_sort mapping land use and land cover classes in sao paulo state southeast of brazil using landsat 8 oli multispectral data and the derived spectral indices and fraction images
topic Land Use and Land Cover (LULC)
forest
forest plantation
agriculture
pasture
urban
url https://www.mdpi.com/1999-4907/14/8/1669
work_keys_str_mv AT yosioeshimabukuro mappinglanduseandlandcoverclassesinsaopaulostatesoutheastofbrazilusinglandsat8olimultispectraldataandthederivedspectralindicesandfractionimages
AT egidioarai mappinglanduseandlandcoverclassesinsaopaulostatesoutheastofbrazilusinglandsat8olimultispectraldataandthederivedspectralindicesandfractionimages
AT gabrielmdasilva mappinglanduseandlandcoverclassesinsaopaulostatesoutheastofbrazilusinglandsat8olimultispectraldataandthederivedspectralindicesandfractionimages
AT taniabhoffmann mappinglanduseandlandcoverclassesinsaopaulostatesoutheastofbrazilusinglandsat8olimultispectraldataandthederivedspectralindicesandfractionimages
AT valdeteduarte mappinglanduseandlandcoverclassesinsaopaulostatesoutheastofbrazilusinglandsat8olimultispectraldataandthederivedspectralindicesandfractionimages
AT paulormartini mappinglanduseandlandcoverclassesinsaopaulostatesoutheastofbrazilusinglandsat8olimultispectraldataandthederivedspectralindicesandfractionimages
AT andeisecerqueiradutra mappinglanduseandlandcoverclassesinsaopaulostatesoutheastofbrazilusinglandsat8olimultispectraldataandthederivedspectralindicesandfractionimages
AT guilhermemataveli mappinglanduseandlandcoverclassesinsaopaulostatesoutheastofbrazilusinglandsat8olimultispectraldataandthederivedspectralindicesandfractionimages
AT henriquelgcassol mappinglanduseandlandcoverclassesinsaopaulostatesoutheastofbrazilusinglandsat8olimultispectraldataandthederivedspectralindicesandfractionimages
AT marcosadami mappinglanduseandlandcoverclassesinsaopaulostatesoutheastofbrazilusinglandsat8olimultispectraldataandthederivedspectralindicesandfractionimages