Random graphs, models and generators of scale-free graphs

In this paper  various models of random graphs describing real networks arising in different research fields: biology, computer science, engineering, sociology are considered. Particular attention is paid to  models describing social networks.  We start with observation of classical Erdos-Renyi mode...

Full description

Bibliographic Details
Main Authors: M. M. Bernovskiy, N. N. Kuzyurin
Format: Article
Language:English
Published: Ivannikov Institute for System Programming of the Russian Academy of Sciences 2018-10-01
Series:Труды Института системного программирования РАН
Subjects:
Online Access:https://ispranproceedings.elpub.ru/jour/article/view/1020
_version_ 1818542863063973888
author M. M. Bernovskiy
N. N. Kuzyurin
author_facet M. M. Bernovskiy
N. N. Kuzyurin
author_sort M. M. Bernovskiy
collection DOAJ
description In this paper  various models of random graphs describing real networks arising in different research fields: biology, computer science, engineering, sociology are considered. Particular attention is paid to  models describing social networks.  We start with observation of classical Erdos-Renyi model and basic facts concerning properties of random graphs  depending on the value p of the probability of appearance each edge in a graph.  Then we observe so-called scale-free model of random graphs proposed by Barabassi and Albert and  some its generalizations. Some mathematical results about properties of random graphs in such models are described. For one such model of Bollobas-Riordan we describe results concerning the diameter of random graph, the number of verticies of given degree (power-law distribution) and other different properties. This class of models can be characterized by the property that so-called power law constant cannot be chosen in advance and has  one fixed value. For example in Bollobas-Riordan model this constant is 3. Finely we observe more general models of random graphs such as Aiello-Chung-Lu model where the power law  constant can be chosen as a parameter.  In such models there are interesting results concerning evolution  properties of random graphs  depending on the value of parameter of power law constant. The main example of such property is the size of maximum clique in random graph which we consider in this paper.
first_indexed 2024-12-11T22:27:44Z
format Article
id doaj.art-8fc20e4b1f744e03825e070d61855880
institution Directory Open Access Journal
issn 2079-8156
2220-6426
language English
last_indexed 2024-12-11T22:27:44Z
publishDate 2018-10-01
publisher Ivannikov Institute for System Programming of the Russian Academy of Sciences
record_format Article
series Труды Института системного программирования РАН
spelling doaj.art-8fc20e4b1f744e03825e070d618558802022-12-22T00:48:14ZengIvannikov Institute for System Programming of the Russian Academy of SciencesТруды Института системного программирования РАН2079-81562220-64262018-10-012201020Random graphs, models and generators of scale-free graphsM. M. Bernovskiy0N. N. Kuzyurin1ФизТехИСП РАНIn this paper  various models of random graphs describing real networks arising in different research fields: biology, computer science, engineering, sociology are considered. Particular attention is paid to  models describing social networks.  We start with observation of classical Erdos-Renyi model and basic facts concerning properties of random graphs  depending on the value p of the probability of appearance each edge in a graph.  Then we observe so-called scale-free model of random graphs proposed by Barabassi and Albert and  some its generalizations. Some mathematical results about properties of random graphs in such models are described. For one such model of Bollobas-Riordan we describe results concerning the diameter of random graph, the number of verticies of given degree (power-law distribution) and other different properties. This class of models can be characterized by the property that so-called power law constant cannot be chosen in advance and has  one fixed value. For example in Bollobas-Riordan model this constant is 3. Finely we observe more general models of random graphs such as Aiello-Chung-Lu model where the power law  constant can be chosen as a parameter.  In such models there are interesting results concerning evolution  properties of random graphs  depending on the value of parameter of power law constant. The main example of such property is the size of maximum clique in random graph which we consider in this paper.https://ispranproceedings.elpub.ru/jour/article/view/1020случайный графбезмасштабная сетьгенератор случайных графовэрдешболлобашчунгянсонлучак
spellingShingle M. M. Bernovskiy
N. N. Kuzyurin
Random graphs, models and generators of scale-free graphs
Труды Института системного программирования РАН
случайный граф
безмасштабная сеть
генератор случайных графов
эрдеш
боллобаш
чунг
янсон
лучак
title Random graphs, models and generators of scale-free graphs
title_full Random graphs, models and generators of scale-free graphs
title_fullStr Random graphs, models and generators of scale-free graphs
title_full_unstemmed Random graphs, models and generators of scale-free graphs
title_short Random graphs, models and generators of scale-free graphs
title_sort random graphs models and generators of scale free graphs
topic случайный граф
безмасштабная сеть
генератор случайных графов
эрдеш
боллобаш
чунг
янсон
лучак
url https://ispranproceedings.elpub.ru/jour/article/view/1020
work_keys_str_mv AT mmbernovskiy randomgraphsmodelsandgeneratorsofscalefreegraphs
AT nnkuzyurin randomgraphsmodelsandgeneratorsofscalefreegraphs