Phase Change Ge-Rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> Core-Shell Nanowires by Metal Organic Chemical Vapor Deposition
Ge-rich Ge–Sb–Te compounds are attractive materials for future phase change memories due to their greater crystallization temperature as it provides a wide range of applications. Herein, we report the self-assembled Ge-rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> core-shell nan...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/11/12/3358 |
_version_ | 1797501991130234880 |
---|---|
author | Arun Kumar Raimondo Cecchini Claudia Wiemer Valentina Mussi Sara De Simone Raffaella Calarco Mario Scuderi Giuseppe Nicotra Massimo Longo |
author_facet | Arun Kumar Raimondo Cecchini Claudia Wiemer Valentina Mussi Sara De Simone Raffaella Calarco Mario Scuderi Giuseppe Nicotra Massimo Longo |
author_sort | Arun Kumar |
collection | DOAJ |
description | Ge-rich Ge–Sb–Te compounds are attractive materials for future phase change memories due to their greater crystallization temperature as it provides a wide range of applications. Herein, we report the self-assembled Ge-rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> core-shell nanowires grown by metal-organic chemical vapor deposition. The core Ge-rich Ge–Sb–Te nanowires were self-assembled through the vapor–liquid–solid mechanism, catalyzed by Au nanoparticles on Si (100) and SiO<sub>2</sub>/Si substrates; conformal overgrowth of the Sb<sub>2</sub>Te<sub>3</sub> shell was subsequently performed at room temperature to realize the core-shell heterostructures. Both Ge-rich Ge–Sb–Te core and Ge-rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> core-shell nanowires were extensively characterized by means of scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Raman microspectroscopy, and electron energy loss spectroscopy to analyze the surface morphology, crystalline structure, vibrational properties, and elemental composition. |
first_indexed | 2024-03-10T03:26:28Z |
format | Article |
id | doaj.art-8fd4f3c1dd234ddba989aee162717797 |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-10T03:26:28Z |
publishDate | 2021-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-8fd4f3c1dd234ddba989aee1627177972023-11-23T09:51:29ZengMDPI AGNanomaterials2079-49912021-12-011112335810.3390/nano11123358Phase Change Ge-Rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> Core-Shell Nanowires by Metal Organic Chemical Vapor DepositionArun Kumar0Raimondo Cecchini1Claudia Wiemer2Valentina Mussi3Sara De Simone4Raffaella Calarco5Mario Scuderi6Giuseppe Nicotra7Massimo Longo8CNR—Institute for Microelectronics and Microsystems, Via C. Olivetti 2, 20864 Agrate Brianza, ItalyCNR—Institute for Microelectronics and Microsystems, Via Gobetti 101, 40129 Bologna, ItalyCNR—Institute for Microelectronics and Microsystems, Via C. Olivetti 2, 20864 Agrate Brianza, ItalyCNR—Institute for Microelectronics and Microsystems, Via del Fosso del Cavaliere 100, 00133 Rome, ItalyCNR—Institute for Microelectronics and Microsystems, Via del Fosso del Cavaliere 100, 00133 Rome, ItalyCNR—Institute for Microelectronics and Microsystems, Via del Fosso del Cavaliere 100, 00133 Rome, ItalyCNR—Institute for Microelectronics and Microsystems, Strada VIII 5, 95121 Catania, ItalyCNR—Institute for Microelectronics and Microsystems, Strada VIII 5, 95121 Catania, ItalyCNR—Institute for Microelectronics and Microsystems, Via del Fosso del Cavaliere 100, 00133 Rome, ItalyGe-rich Ge–Sb–Te compounds are attractive materials for future phase change memories due to their greater crystallization temperature as it provides a wide range of applications. Herein, we report the self-assembled Ge-rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> core-shell nanowires grown by metal-organic chemical vapor deposition. The core Ge-rich Ge–Sb–Te nanowires were self-assembled through the vapor–liquid–solid mechanism, catalyzed by Au nanoparticles on Si (100) and SiO<sub>2</sub>/Si substrates; conformal overgrowth of the Sb<sub>2</sub>Te<sub>3</sub> shell was subsequently performed at room temperature to realize the core-shell heterostructures. Both Ge-rich Ge–Sb–Te core and Ge-rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> core-shell nanowires were extensively characterized by means of scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Raman microspectroscopy, and electron energy loss spectroscopy to analyze the surface morphology, crystalline structure, vibrational properties, and elemental composition.https://www.mdpi.com/2079-4991/11/12/3358MOCVDVLSphase-change memorynanowirescore-shellGe–Sb–Te |
spellingShingle | Arun Kumar Raimondo Cecchini Claudia Wiemer Valentina Mussi Sara De Simone Raffaella Calarco Mario Scuderi Giuseppe Nicotra Massimo Longo Phase Change Ge-Rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> Core-Shell Nanowires by Metal Organic Chemical Vapor Deposition Nanomaterials MOCVD VLS phase-change memory nanowires core-shell Ge–Sb–Te |
title | Phase Change Ge-Rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> Core-Shell Nanowires by Metal Organic Chemical Vapor Deposition |
title_full | Phase Change Ge-Rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> Core-Shell Nanowires by Metal Organic Chemical Vapor Deposition |
title_fullStr | Phase Change Ge-Rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> Core-Shell Nanowires by Metal Organic Chemical Vapor Deposition |
title_full_unstemmed | Phase Change Ge-Rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> Core-Shell Nanowires by Metal Organic Chemical Vapor Deposition |
title_short | Phase Change Ge-Rich Ge–Sb–Te/Sb<sub>2</sub>Te<sub>3</sub> Core-Shell Nanowires by Metal Organic Chemical Vapor Deposition |
title_sort | phase change ge rich ge sb te sb sub 2 sub te sub 3 sub core shell nanowires by metal organic chemical vapor deposition |
topic | MOCVD VLS phase-change memory nanowires core-shell Ge–Sb–Te |
url | https://www.mdpi.com/2079-4991/11/12/3358 |
work_keys_str_mv | AT arunkumar phasechangegerichgesbtesbsub2subtesub3subcoreshellnanowiresbymetalorganicchemicalvapordeposition AT raimondocecchini phasechangegerichgesbtesbsub2subtesub3subcoreshellnanowiresbymetalorganicchemicalvapordeposition AT claudiawiemer phasechangegerichgesbtesbsub2subtesub3subcoreshellnanowiresbymetalorganicchemicalvapordeposition AT valentinamussi phasechangegerichgesbtesbsub2subtesub3subcoreshellnanowiresbymetalorganicchemicalvapordeposition AT saradesimone phasechangegerichgesbtesbsub2subtesub3subcoreshellnanowiresbymetalorganicchemicalvapordeposition AT raffaellacalarco phasechangegerichgesbtesbsub2subtesub3subcoreshellnanowiresbymetalorganicchemicalvapordeposition AT marioscuderi phasechangegerichgesbtesbsub2subtesub3subcoreshellnanowiresbymetalorganicchemicalvapordeposition AT giuseppenicotra phasechangegerichgesbtesbsub2subtesub3subcoreshellnanowiresbymetalorganicchemicalvapordeposition AT massimolongo phasechangegerichgesbtesbsub2subtesub3subcoreshellnanowiresbymetalorganicchemicalvapordeposition |