Gelatin-Functionalized Carbon Nanotubes Loaded with Cisplatin for Anti-Cancer Therapy

Cisplatin (Cp), a chemotherapeutic agent, interacts with purines on tumor DNA, causing tumor cell apoptosis. However, cisplatin has the characteristics of non-specific distribution and lack of selectivity, resulting in systemic toxicity. Moreover, it cannot maintain the drug’s high concentration in...

Full description

Bibliographic Details
Main Authors: Rong Li, Zhenfei Bao, Pei Wang, Yunyun Deng, Junping Fan, Xin Zhu, Xinyu Xia, Yiming Song, Haiyan Yao, Dongfang Li
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/16/3333
Description
Summary:Cisplatin (Cp), a chemotherapeutic agent, interacts with purines on tumor DNA, causing tumor cell apoptosis. However, cisplatin has the characteristics of non-specific distribution and lack of selectivity, resulting in systemic toxicity. Moreover, it cannot maintain the drug’s high concentration in the tumor-weak acid environment. These flaws of cisplatin restrict its use in clinical applications. Therefore, a pH-responsive carbon nanotube-modified nano-drug delivery system (CNTs/Gel/Cp) was constructed in this study using gelatin (Gel)-modified carbon nanotubes (CNTs/Gel) loaded with cisplatin to release drugs precisely and slowly, preventing premature inactivation and maintaining an effective concentration. When M<sub>Cp</sub>:M<sub>CNTs/Gel</sub> = 1:1, the drug reaches the highest loading rate and entrapment efficiency. To achieve the sustained-release effect, CNTs/Gel/Cp can release the medicine steadily for a long time in a pH environment of 6.0. Additionally, CNTs/Gel/Cp display antitumor properties comparable to cisplatin in a manner that varies with the dosage administered. These findings indicate that CNTs/Gel/Cp have an effective, sustained release of cisplatin and a good antitumor effect, providing a theoretical and experimental basis for the clinical application of modified carbon nanotubes (CNTs) as a new drug delivery system.
ISSN:2073-4360