Summary: | <p>Abstract</p> <p>Background</p> <p>RNA interference (RNAi), mediated by 21-nucleotide (nt)-length small interfering RNAs (siRNAs), is a powerful tool not only for studying gene function but also for therapeutic applications. RNAi, requiring perfect complementarity between the siRNA guide strand and the target mRNA, was believed to be extremely specific. However, a recent growing body of evidence has suggested that siRNA could down-regulate unintended genes whose transcripts possess complementarity to the 7-nt siRNA seed region. This off-target gene silencing may often provide incongruous results obtained from knockdown experiments, leading to misinterpretation. Thus, an efficient algorithm for designing functional siRNAs with minimal off-target effect based on the mechanistic features is considered of value.</p> <p>Results</p> <p>We present siDirect 2.0, an update of our web-based software siDirect, which provides functional and off-target minimized siRNA design for mammalian RNAi. The previous version of our software designed functional siRNAs by considering the relationship between siRNA sequence and RNAi activity, and provided them along with the enumeration of potential off-target gene candidates by using a fast and sensitive homology search algorithm. In the new version, the siRNA design algorithm is extensively updated to eliminate off-target effects by reflecting our recent finding that the capability of siRNA to induce off-target effect is highly correlated to the thermodynamic stability, or the melting temperature (Tm), of the seed-target duplex, which is formed between the nucleotides positioned at 2-8 from the 5' end of the siRNA guide strand and its target mRNA. Selection of siRNAs with lower seed-target duplex stabilities (benchmark Tm < 21.5°C) followed by the elimination of unrelated transcripts with nearly perfect match should minimize the off-target effects.</p> <p>Conclusion</p> <p>siDirect 2.0 provides functional, target-specific siRNA design with the updated algorithm which significantly reduces off-target silencing. When the candidate functional siRNAs could form seed-target duplexes with Tm values below 21.5°C, and their 19-nt regions spanning positions 2-20 of both strands have at least two mismatches to any other non-targeted transcripts, siDirect 2.0 can design at least one qualified siRNA for >94% of human mRNA sequences in RefSeq. siDirect 2.0 is available at <url>http://siDirect2.RNAi.jp/</url>.</p>
|