Neural Sign Language Translation Based on Human Keypoint Estimation
We propose a sign language translation system based on human keypoint estimation. It is well-known that many problems in the field of computer vision require a massive dataset to train deep neural network models. The situation is even worse when it comes to the sign language translation problem as i...
Главные авторы: | Sang-Ki Ko, Chang Jo Kim, Hyedong Jung, Choongsang Cho |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
MDPI AG
2019-07-01
|
Серии: | Applied Sciences |
Предметы: | |
Online-ссылка: | https://www.mdpi.com/2076-3417/9/13/2683 |
Схожие документы
-
Preprocessing for Keypoint-Based Sign Language Translation without Glosses
по: Youngmin Kim, и др.
Опубликовано: (2023-03-01) -
Unbiased evaluation of keypoint detectors with respect to rotation invariance
по: Karol Matusiak, и др.
Опубликовано: (2017-10-01) -
An Improved Deep Keypoint Detection Network for Space Targets Pose Estimation
по: Junjie Xu, и др.
Опубликовано: (2020-11-01) -
Creating a Parallel Corpus for the Kazakh Sign Language and Learning
по: Aigerim Yerimbetova, и др.
Опубликовано: (2025-03-01) -
Comparison of Keypoint Detectors and Descriptors for Relative Radiometric Normalization of Bitemporal Remote Sensing Images
по: Armin Moghimi, и др.
Опубликовано: (2021-01-01)