Phonon-mediated off-resonant coupling effects in semiconductor quantum-dot lasers
The impact of non-resonant background emitters in semiconductor quantum-dot microcavity lasers is addressed within theoretical investigations based on the solution of the von Neumann equation. Off-resonant coupling between emitter resonances and the cavity mode is enabled via phonons, which are incl...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2013-01-01
|
Series: | New Journal of Physics |
Online Access: | https://doi.org/10.1088/1367-2630/15/3/035019 |
Summary: | The impact of non-resonant background emitters in semiconductor quantum-dot microcavity lasers is addressed within theoretical investigations based on the solution of the von Neumann equation. Off-resonant coupling between emitter resonances and the cavity mode is enabled via phonons, which are included in the von Neumann dynamics by an effective Lindblad contribution. The results show enhanced coherent emission from non-resonantly coupled quantum dots, while the frequently used phenomenological cavity feeding mechanism only enhances the thermal component of the emission. |
---|---|
ISSN: | 1367-2630 |