Impact of Oat Supplementation on the Structure, Digestibility, and Sensory Properties of Extruded Instant Rice

The addition of oat at varying percentages (26%, 32%, 38%, 44% and 50%) was used to evaluate the structural, microstructural, and physicochemical changes in instant-extruded rice (IER). A mixture of broken rice and oat flour was extruded in a twin-screw extruder. It was found that when adding 44% oa...

Full description

Bibliographic Details
Main Authors: Junling Wu, Kai Zhu, Sijie Zhang, Meng Shi, Luyan Liao
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/13/2/217
Description
Summary:The addition of oat at varying percentages (26%, 32%, 38%, 44% and 50%) was used to evaluate the structural, microstructural, and physicochemical changes in instant-extruded rice (IER). A mixture of broken rice and oat flour was extruded in a twin-screw extruder. It was found that when adding 44% oats, the gelatinization degree of the mixed powder was the lowest (89.086 ± 1.966%). The dietary fiber content increased correspondingly with the increase in oat addition. Analyses of texture properties revealed that the hardness, adhesive, and resilience values increased and then decreased with oat addition. Compared with other common instant rice (IR), the advantages of IER were evaluated in terms of microstructure, digestive performance, and flavor. IER with 44% oat addition obtained in this study had higher hardness, adhesiveness, rehydration time, and sensory score, and the content of resistant starch (RS) reached 6.06%. The electronic nose and electronic tongue analyses could distinguish the flavor of different IR efficiently. This study showed the feasibility of preparing fiber-enriched IER. The results demonstrated the potential for the development and utilization of broken rice, providing a reference for the development of IER.
ISSN:2304-8158