Quadratic-Phase Wave-Packet Transform in <i><b>L</b></i><sup>2</sup>(<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)

Wavelet transform is a powerful tool for analysing the problems arising in harmonic analysis, signal and image processing, sampling, filtering, and so on. However, they seem to be inadequate for representing those signals whose energy is not well concentrated in the frequency domain. In pursuit of r...

Full description

Bibliographic Details
Main Authors: Hari M. Srivastava, Firdous A. Shah, Waseem Z. Lone
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/10/2018
_version_ 1797469855220236288
author Hari M. Srivastava
Firdous A. Shah
Waseem Z. Lone
author_facet Hari M. Srivastava
Firdous A. Shah
Waseem Z. Lone
author_sort Hari M. Srivastava
collection DOAJ
description Wavelet transform is a powerful tool for analysing the problems arising in harmonic analysis, signal and image processing, sampling, filtering, and so on. However, they seem to be inadequate for representing those signals whose energy is not well concentrated in the frequency domain. In pursuit of representations of such signals, we propose a novel time-frequency transform coined as quadratic-phase wave packet transform in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The proposed transform is aimed at rectifying the conventional wavelet transform by employing a quadratic-phase Fourier transform with extra degrees of freedom. Besides the formulation of all the fundamental results, including the orthogonality relation, reconstruction formula and the characterization of range, we also derive a direct relationship between the well-known Wigner-Ville distribution and the proposed transform. In addition, we study the quadratic-phase wave-packet transform in the framework of almost periodic functions. Finally, we extend the scope of the present work by investigating the composition of quadratic-phase wave packet transforms.
first_indexed 2024-03-09T19:26:57Z
format Article
id doaj.art-8ff0900868dd46f5bb5763dcb63ef686
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T19:26:57Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-8ff0900868dd46f5bb5763dcb63ef6862023-11-24T02:50:46ZengMDPI AGSymmetry2073-89942022-09-011410201810.3390/sym14102018Quadratic-Phase Wave-Packet Transform in <i><b>L</b></i><sup>2</sup>(<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)Hari M. Srivastava0Firdous A. Shah1Waseem Z. Lone2Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaDepartment of Mathematics, University of Kashmir, South Campus, Anantnag 192101, Jammu and Kashmir, IndiaDepartment of Mathematics, University of Kashmir, South Campus, Anantnag 192101, Jammu and Kashmir, IndiaWavelet transform is a powerful tool for analysing the problems arising in harmonic analysis, signal and image processing, sampling, filtering, and so on. However, they seem to be inadequate for representing those signals whose energy is not well concentrated in the frequency domain. In pursuit of representations of such signals, we propose a novel time-frequency transform coined as quadratic-phase wave packet transform in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The proposed transform is aimed at rectifying the conventional wavelet transform by employing a quadratic-phase Fourier transform with extra degrees of freedom. Besides the formulation of all the fundamental results, including the orthogonality relation, reconstruction formula and the characterization of range, we also derive a direct relationship between the well-known Wigner-Ville distribution and the proposed transform. In addition, we study the quadratic-phase wave-packet transform in the framework of almost periodic functions. Finally, we extend the scope of the present work by investigating the composition of quadratic-phase wave packet transforms.https://www.mdpi.com/2073-8994/14/10/2018quadratic-phase Fourier transformwave-packet transformWigner-Ville distributionperiodic functioncomposition operator
spellingShingle Hari M. Srivastava
Firdous A. Shah
Waseem Z. Lone
Quadratic-Phase Wave-Packet Transform in <i><b>L</b></i><sup>2</sup>(<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)
Symmetry
quadratic-phase Fourier transform
wave-packet transform
Wigner-Ville distribution
periodic function
composition operator
title Quadratic-Phase Wave-Packet Transform in <i><b>L</b></i><sup>2</sup>(<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)
title_full Quadratic-Phase Wave-Packet Transform in <i><b>L</b></i><sup>2</sup>(<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)
title_fullStr Quadratic-Phase Wave-Packet Transform in <i><b>L</b></i><sup>2</sup>(<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)
title_full_unstemmed Quadratic-Phase Wave-Packet Transform in <i><b>L</b></i><sup>2</sup>(<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)
title_short Quadratic-Phase Wave-Packet Transform in <i><b>L</b></i><sup>2</sup>(<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)
title_sort quadratic phase wave packet transform in i b l b i sup 2 sup inline formula math display inline semantics mrow mi mathvariant double struck r mi mrow semantics math inline formula
topic quadratic-phase Fourier transform
wave-packet transform
Wigner-Ville distribution
periodic function
composition operator
url https://www.mdpi.com/2073-8994/14/10/2018
work_keys_str_mv AT harimsrivastava quadraticphasewavepackettransforminiblbisup2supinlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformula
AT firdousashah quadraticphasewavepackettransforminiblbisup2supinlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformula
AT waseemzlone quadraticphasewavepackettransforminiblbisup2supinlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformula