Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing
<p>Isoprene-derived secondary organic aerosol (iSOA) is a significant contributor to organic carbon (OC) in some forested regions, such as tropical rainforests and the Southeastern US. However, its contribution to organic aerosol in urban areas that have high levels of anthropogenic pollutants...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-06-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/20/7531/2020/acp-20-7531-2020.pdf |
_version_ | 1819205979197145088 |
---|---|
author | D. J. Bryant W. J. Dixon J. R. Hopkins J. R. Hopkins R. E. Dunmore K. L. Pereira M. Shaw M. Shaw F. A. Squires T. J. Bannan A. Mehra S. D. Worrall S. D. Worrall A. Bacak A. Bacak H. Coe C. J. Percival C. J. Percival L. K. Whalley L. K. Whalley D. E. Heard E. J. Slater B. Ouyang B. Ouyang T. Cui T. Cui J. D. Surratt D. Liu D. Liu Z. Shi Z. Shi R. Harrison Y. Sun W. Xu A. C. Lewis A. C. Lewis J. D. Lee J. D. Lee A. R. Rickard A. R. Rickard J. F. Hamilton |
author_facet | D. J. Bryant W. J. Dixon J. R. Hopkins J. R. Hopkins R. E. Dunmore K. L. Pereira M. Shaw M. Shaw F. A. Squires T. J. Bannan A. Mehra S. D. Worrall S. D. Worrall A. Bacak A. Bacak H. Coe C. J. Percival C. J. Percival L. K. Whalley L. K. Whalley D. E. Heard E. J. Slater B. Ouyang B. Ouyang T. Cui T. Cui J. D. Surratt D. Liu D. Liu Z. Shi Z. Shi R. Harrison Y. Sun W. Xu A. C. Lewis A. C. Lewis J. D. Lee J. D. Lee A. R. Rickard A. R. Rickard J. F. Hamilton |
author_sort | D. J. Bryant |
collection | DOAJ |
description | <p>Isoprene-derived secondary organic aerosol (iSOA) is a significant
contributor to organic carbon (OC) in some forested regions, such as
tropical rainforests and the Southeastern US. However, its contribution to
organic aerosol in urban areas that have high levels of anthropogenic
pollutants is poorly understood. In this study, we examined the formation of
anthropogenically influenced iSOA during summer in Beijing, China. Local
isoprene emissions and high levels of anthropogenic pollutants, in
particular <span class="inline-formula">NO<sub><i>x</i></sub></span> and particulate <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="74b4be02f6bf1e477b176a208786a61b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-7531-2020-ie00001.svg" width="29pt" height="17pt" src="acp-20-7531-2020-ie00001.png"/></svg:svg></span></span>, led to the formation of
iSOA under both high- and low-NO oxidation conditions, with significant
heterogeneous transformations of isoprene-derived oxidation products to
particulate organosulfates (OSs) and nitrooxy-organosulfates (NOSs).
Ultra-high-performance liquid chromatography coupled to high-resolution mass
spectrometry was combined with a rapid automated data processing technique
to quantify 31 proposed iSOA tracers in offline PM<span class="inline-formula"><sub>2.5</sub></span> filter
extracts. The co-elution of the inorganic ions in the<span id="page7532"/> extracts caused matrix
effects that impacted two authentic standards differently. The average
concentration of iSOA OSs and NOSs was 82.5 ng m<span class="inline-formula"><sup>−3</sup></span>, which was around 3 times
higher than the observed concentrations of their oxygenated precursors
(2-methyltetrols and 2-methylglyceric acid). OS formation was dependant on
both photochemistry and the sulfate available for reactive uptake, as shown by a
strong correlation with the product of ozone (<span class="inline-formula">O<sub>3</sub></span>) and particulate
sulfate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="a8455a3a3390243c17ea2f3ca419ac4e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-7531-2020-ie00002.svg" width="29pt" height="17pt" src="acp-20-7531-2020-ie00002.png"/></svg:svg></span></span>). A greater proportion of high-NO OS products were
observed in Beijing compared with previous studies in less polluted
environments. The iSOA-derived OSs and NOSs represented 0.62 %
of the oxidized organic aerosol measured by aerosol mass spectrometry on average, but
this increased to <span class="inline-formula">∼3 <i>%</i></span> on certain days. These results
indicate for the first time that iSOA formation in urban Beijing is strongly
controlled by anthropogenic emissions and results in extensive conversion to
OS products from heterogenous reactions.</p> |
first_indexed | 2024-12-23T05:00:18Z |
format | Article |
id | doaj.art-8ff3aa0306e64b10877e4cfe936a0fb8 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-23T05:00:18Z |
publishDate | 2020-06-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-8ff3aa0306e64b10877e4cfe936a0fb82022-12-21T17:59:15ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-06-01207531755210.5194/acp-20-7531-2020Strong anthropogenic control of secondary organic aerosol formation from isoprene in BeijingD. J. Bryant0W. J. Dixon1J. R. Hopkins2J. R. Hopkins3R. E. Dunmore4K. L. Pereira5M. Shaw6M. Shaw7F. A. Squires8T. J. Bannan9A. Mehra10S. D. Worrall11S. D. Worrall12A. Bacak13A. Bacak14H. Coe15C. J. Percival16C. J. Percival17L. K. Whalley18L. K. Whalley19D. E. Heard20E. J. Slater21B. Ouyang22B. Ouyang23T. Cui24T. Cui25J. D. Surratt26D. Liu27D. Liu28Z. Shi29Z. Shi30R. Harrison31Y. Sun32W. Xu33A. C. Lewis34A. C. Lewis35J. D. Lee36J. D. Lee37A. R. Rickard38A. R. Rickard39J. F. Hamilton40Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UKNational Centre for Atmospheric Science, University of York, York, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UKNational Centre for Atmospheric Science, University of York, York, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UKSchool of Earth and Environmental Sciences, The University of Manchester, Manchester, UKSchool of Earth and Environmental Sciences, The University of Manchester, Manchester, UKSchool of Earth and Environmental Sciences, The University of Manchester, Manchester, UKnow at: Chemical Engineering and Applied Chemistry, School of Engineering and Applied Science, Aston University, Birmingham, UKSchool of Earth and Environmental Sciences, The University of Manchester, Manchester, UKnow at: Turkish Accelerator and Radiation Laboratory, Ankara University Institute of Accelerator Technologies, Ankara, TurkeySchool of Earth and Environmental Sciences, The University of Manchester, Manchester, UKSchool of Earth and Environmental Sciences, The University of Manchester, Manchester, UKnow at: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, USASchool of Chemistry, University of Leeds, Leeds, UKNational Centre for Atmospheric Science, University of Leeds, Leeds, UKSchool of Chemistry, University of Leeds, Leeds, UKSchool of Chemistry, University of Leeds, Leeds, UKLancaster Environment Centre, Lancaster University, Lancaster, UKDepartment of Chemistry, University of Cambridge, Cambridge, UKDepartment of Environmental Sciences and Engineering, Gillings School of Global Health, University of North Carolina, Chapel Hill, USAnow at: Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDepartment of Environmental Sciences and Engineering, Gillings School of Global Health, University of North Carolina, Chapel Hill, USASchool of Geography, Earth and Environmental Sciences, the University of Birmingham, Birmingham, UKnow at: State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR ChinaSchool of Geography, Earth and Environmental Sciences, the University of Birmingham, Birmingham, UKInstitute of Surface-Earth System Science, Tianjin University, Tianjin, ChinaSchool of Geography, Earth and Environmental Sciences, the University of Birmingham, Birmingham, UKInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, PR ChinaInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, PR ChinaWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UKNational Centre for Atmospheric Science, University of York, York, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UKNational Centre for Atmospheric Science, University of York, York, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UKNational Centre for Atmospheric Science, University of York, York, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK<p>Isoprene-derived secondary organic aerosol (iSOA) is a significant contributor to organic carbon (OC) in some forested regions, such as tropical rainforests and the Southeastern US. However, its contribution to organic aerosol in urban areas that have high levels of anthropogenic pollutants is poorly understood. In this study, we examined the formation of anthropogenically influenced iSOA during summer in Beijing, China. Local isoprene emissions and high levels of anthropogenic pollutants, in particular <span class="inline-formula">NO<sub><i>x</i></sub></span> and particulate <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="74b4be02f6bf1e477b176a208786a61b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-7531-2020-ie00001.svg" width="29pt" height="17pt" src="acp-20-7531-2020-ie00001.png"/></svg:svg></span></span>, led to the formation of iSOA under both high- and low-NO oxidation conditions, with significant heterogeneous transformations of isoprene-derived oxidation products to particulate organosulfates (OSs) and nitrooxy-organosulfates (NOSs). Ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was combined with a rapid automated data processing technique to quantify 31 proposed iSOA tracers in offline PM<span class="inline-formula"><sub>2.5</sub></span> filter extracts. The co-elution of the inorganic ions in the<span id="page7532"/> extracts caused matrix effects that impacted two authentic standards differently. The average concentration of iSOA OSs and NOSs was 82.5 ng m<span class="inline-formula"><sup>−3</sup></span>, which was around 3 times higher than the observed concentrations of their oxygenated precursors (2-methyltetrols and 2-methylglyceric acid). OS formation was dependant on both photochemistry and the sulfate available for reactive uptake, as shown by a strong correlation with the product of ozone (<span class="inline-formula">O<sub>3</sub></span>) and particulate sulfate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="a8455a3a3390243c17ea2f3ca419ac4e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-7531-2020-ie00002.svg" width="29pt" height="17pt" src="acp-20-7531-2020-ie00002.png"/></svg:svg></span></span>). A greater proportion of high-NO OS products were observed in Beijing compared with previous studies in less polluted environments. The iSOA-derived OSs and NOSs represented 0.62 % of the oxidized organic aerosol measured by aerosol mass spectrometry on average, but this increased to <span class="inline-formula">∼3 <i>%</i></span> on certain days. These results indicate for the first time that iSOA formation in urban Beijing is strongly controlled by anthropogenic emissions and results in extensive conversion to OS products from heterogenous reactions.</p>https://www.atmos-chem-phys.net/20/7531/2020/acp-20-7531-2020.pdf |
spellingShingle | D. J. Bryant W. J. Dixon J. R. Hopkins J. R. Hopkins R. E. Dunmore K. L. Pereira M. Shaw M. Shaw F. A. Squires T. J. Bannan A. Mehra S. D. Worrall S. D. Worrall A. Bacak A. Bacak H. Coe C. J. Percival C. J. Percival L. K. Whalley L. K. Whalley D. E. Heard E. J. Slater B. Ouyang B. Ouyang T. Cui T. Cui J. D. Surratt D. Liu D. Liu Z. Shi Z. Shi R. Harrison Y. Sun W. Xu A. C. Lewis A. C. Lewis J. D. Lee J. D. Lee A. R. Rickard A. R. Rickard J. F. Hamilton Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing Atmospheric Chemistry and Physics |
title | Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing |
title_full | Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing |
title_fullStr | Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing |
title_full_unstemmed | Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing |
title_short | Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing |
title_sort | strong anthropogenic control of secondary organic aerosol formation from isoprene in beijing |
url | https://www.atmos-chem-phys.net/20/7531/2020/acp-20-7531-2020.pdf |
work_keys_str_mv | AT djbryant stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT wjdixon stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT jrhopkins stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT jrhopkins stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT redunmore stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT klpereira stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT mshaw stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT mshaw stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT fasquires stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT tjbannan stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT amehra stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT sdworrall stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT sdworrall stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT abacak stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT abacak stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT hcoe stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT cjpercival stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT cjpercival stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT lkwhalley stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT lkwhalley stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT deheard stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT ejslater stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT bouyang stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT bouyang stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT tcui stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT tcui stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT jdsurratt stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT dliu stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT dliu stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT zshi stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT zshi stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT rharrison stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT ysun stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT wxu stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT aclewis stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT aclewis stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT jdlee stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT jdlee stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT arrickard stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT arrickard stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing AT jfhamilton stronganthropogeniccontrolofsecondaryorganicaerosolformationfromisopreneinbeijing |