Design and Analysis of Dual-Band High-Gain THz Antenna Array for THz Space Applications

In this paper, a high-gain THz antenna array is presented. The array uses a polyimide substrate with a thickness of 10 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ<...

Full description

Bibliographic Details
Main Authors: Waleed Shihzad, Sadiq Ullah, Ashfaq Ahmad, Nisar Ahmad Abbasi, Dong-you Choi
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/18/9231
Description
Summary:In this paper, a high-gain THz antenna array is presented. The array uses a polyimide substrate with a thickness of 10 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m, a relative permittivity of 3.5, and an overall volume of 2920 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m × 1055 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m × 10 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m, which can be employed for THz band space communication and other interesting applications. The dual-band single-element antenna is designed in four steps, while operating at 0.714 and 0.7412 THz with −10 dB bandwidths of 4.71 and 3.13 GHz, providing gain of 5.14 and 5 dB, respectively. In order to achieve a high gain, multiple order antenna arrays are designed such as the 2 × 1 antenna array and the 4 × 1 antenna array, named type B and C, respectively. The gain and directivity of the proposed type C THz antenna array are 12.5 and 11.23 dB, and 12.532 and 11.625 dBi at 0.714 and 0.7412 THz, with 99.76 and 96.6% radiation efficiency, respectively. For justification purposes, the simulations of the type B antenna are carried out in two simulators such as the CST microwave studio (CSTMWS) and the advance design system (ADS), and the performance of the type B antenna is compared with an equivalent circuit model on the bases of return loss, resulting in strong agreement. Furthermore, the parametric analysis for the type C antenna is done on the basis of separation among the radiating elements in the range 513 to 553 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m. A 64 × 1 antenna array is used to achieve possible gains of 23.8 and 24.1 dB, and directivity of 24.2 and 24.5 dBi with good efficiencies of about 91.66 and 90.35% at 0.7085 and 0.75225 THz, respectively, while the 128 × 1 antenna array provides a gain of 26.8 and 27.2 dB, and directivity of 27.2 and 27.7 dBi with good efficiency of 91.66 and 90.35% at 0.7085 and 0.75225 THz, respectively. All the results achieved in this manuscript ensure the proposed design is a feasible candidate for high-speed and free space wireless communication systems.
ISSN:2076-3417