Analysis of Innovative Two-Span Suspension Bridges

Recently, two-span, or the so-called single pylon suspension bridges, due to their constructing structure, have been widely applied. A reduction in deformation seems to be the main problem of the behaviour and design of such bridges. The deformation of suspension bridges is mainly determined by cabl...

תיאור מלא

מידע ביבליוגרפי
Main Authors: Algirdas Juozapaitis, Tomas Merkevičius, Alfonsas Daniūnas, Romas Kliukas, Giedrė Sandovič, Ona Lukoševičienė
פורמט: Article
שפה:English
יצא לאור: Riga Technical University Press 2015-09-01
סדרה:The Baltic Journal of Road and Bridge Engineering
נושאים:
גישה מקוונת:https://bjrbe-journals.rtu.lv/article/view/3449
תיאור
סיכום:Recently, two-span, or the so-called single pylon suspension bridges, due to their constructing structure, have been widely applied. A reduction in deformation seems to be the main problem of the behaviour and design of such bridges. The deformation of suspension bridges is mainly determined by cable kinematic displacements caused by temporary loadings rather than by elastic deformations. Not all known methods for the stabilization of the initial form of suspension bridges are suitable for single pylon bridges. The employment of the so-called rigid cables that increase the general stiffness of the suspension bridge appears to be one of the innovative methods for stabilizing the initial form of single pylon suspension bridges. Rigid cables are designed from standard steel profiles and, compared to the com- mon ones made of spiral and parallel wires, are more resistant to corrosion. Moreover, the construction joints, in terms of fabrication and installation, have a simpler form. However, calculation methods for such single pylon suspension bridges with rigid cables are not sufficiently prepared. Only single publications on the analysis of the behaviour of one or three-span suspension bridges with rigid cables have been available so far. The paper presents analytical expressions to calculate the displacements and internal forces of suspension bridges with rigid cables thus assessing the sequence of cable installation. Also, the paper describes the sequence of iterative calculation.
ISSN:1822-427X
1822-4288