Constructing Cycles in Isogeny Graphs of Supersingular Elliptic Curves

Loops and cycles play an important role in computing endomorphism rings of supersingular elliptic curves and related cryptosystems. For a supersingular elliptic curve E defined over 𝔽p2, if an imaginary quadratic order O can be embedded in End(E) and a prime L splits into two principal ideals in O,...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Xiao Guanju, Luo Lixia, Deng Yingpu
বিন্যাস: প্রবন্ধ
ভাষা:English
প্রকাশিত: De Gruyter 2021-05-01
মালা:Journal of Mathematical Cryptology
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://doi.org/10.1515/jmc-2020-0029
বিবরন
সংক্ষিপ্ত:Loops and cycles play an important role in computing endomorphism rings of supersingular elliptic curves and related cryptosystems. For a supersingular elliptic curve E defined over 𝔽p2, if an imaginary quadratic order O can be embedded in End(E) and a prime L splits into two principal ideals in O, we construct loops or cycles in the supersingular L-isogeny graph at the vertices which are next to j(E) in the supersingular ℓ-isogeny graph where ℓ is a prime different from L. Next, we discuss the lengths of these cycles especially for j(E) = 1728 and 0. Finally, we also determine an upper bound on primes p for which there are unexpected 2-cycles if ℓ doesn’t split in O.
আইএসএসএন:1862-2976
1862-2984