Constructing Cycles in Isogeny Graphs of Supersingular Elliptic Curves
Loops and cycles play an important role in computing endomorphism rings of supersingular elliptic curves and related cryptosystems. For a supersingular elliptic curve E defined over 𝔽p2, if an imaginary quadratic order O can be embedded in End(E) and a prime L splits into two principal ideals in O,...
Autors principals: | Xiao Guanju, Luo Lixia, Deng Yingpu |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
De Gruyter
2021-05-01
|
Col·lecció: | Journal of Mathematical Cryptology |
Matèries: | |
Accés en línia: | https://doi.org/10.1515/jmc-2020-0029 |
Ítems similars
-
Orienting supersingular isogeny graphs
per: Colò Leonardo, et al.
Publicat: (2020-10-01) -
Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies
per: De Feo Luca, et al.
Publicat: (2014-09-01) -
A classification of isogeny‐torsion graphs of Q‐isogeny classes of elliptic curves
per: Garen Chiloyan, et al.
Publicat: (2021-12-01) -
On the supersingular GPST attack
per: Basso Andrea, et al.
Publicat: (2021-09-01) -
Constructing elliptic curve isogenies in quantum subexponential time
per: Childs Andrew, et al.
Publicat: (2014-02-01)