Summary: | Hundreds of thousands of ubiquitous sensing (US) devices have provided an enormous number of data for Information-Centric Networking (ICN), which is an emerging network architecture that has the potential to solve a great variety of issues faced by the traditional network. A Caching Joint Shortcut Routing (CJSR) scheme is proposed in this paper to improve the Quality of service (QoS) for ICN. The CJSR scheme mainly has two innovations which are different from other in-network caching schemes: (1) Two routing shortcuts are set up to reduce the length of routing paths. Because of some inconvenient transmission processes, the routing paths of previous schemes are prolonged, and users can only request data from Data Centers (DCs) until the data have been uploaded from Data Producers (DPs) to DCs. Hence, the first kind of shortcut is built from DPs to users directly. This shortcut could release the burden of whole network and reduce delay. Moreover, in the second shortcut routing method, a Content Router (CR) which could yield shorter length of uploading routing path from DPs to DCs is chosen, and then data packets are uploaded through this chosen CR. In this method, the uploading path shares some segments with the pre-caching path, thus the overall length of routing paths is reduced. (2) The second innovation of the CJSR scheme is that a cooperative pre-caching mechanism is proposed so that QoS could have a further increase. Besides being used in downloading routing, the pre-caching mechanism can also be used when data packets are uploaded towards DCs. Combining uploading and downloading pre-caching, the cooperative pre-caching mechanism exhibits high performance in different situations. Furthermore, to address the scarcity of storage size, an algorithm that could make use of storage from idle CRs is proposed. After comparing the proposed scheme with five existing schemes via simulations, experiments results reveal that the CJSR scheme could reduce the total number of processed interest packets by 54.8%, enhance the cache hits of each CR and reduce the number of total hop counts by 51.6% and cut down the length of routing path for users to obtain their interested data by 28.6–85.7% compared with the traditional NDN scheme. Moreover, the length of uploading routing path could be decreased by 8.3–33.3%.
|