Summary: | The purpose of this study was to finetune a deep learning model, real-enhanced super-resolution generative adversarial network (Real-ESRGAN), and investigate its diagnostic value in calcified coronary plaques with the aim of suppressing blooming artifacts for the further improvement of coronary lumen assessment. We finetuned the Real-ESRGAN model and applied it to 50 patients with 184 calcified plaques detected at three main coronary arteries (left anterior descending [LAD], left circumflex [LCx] and right coronary artery [RCA]). Measurements of coronary stenosis were collected from original coronary computed tomography angiography (CCTA) and Real-ESRGAN-processed images, including Real-ESRGAN-high-resolution, Real-ESRGAN-average and Real-ESRGAN-median (Real-ESRGAN-HR, Real-ESRGAN-A and Real-ESRGAN-M) with invasive coronary angiography as the reference. Our results showed specificity and positive predictive value (PPV) of the Real-ESRGAN-processed images were improved at all of the three coronary arteries, leading to significant reduction in the false positive rates when compared to those of the original CCTA images. The specificity and PPV of the Real-ESRGAN-M images were the highest at the RCA level, with values being 80% (95% CI: 64.4%, 90.9%) and 61.9% (95% CI: 45.6%, 75.9%), although the sensitivity was reduced to 81.3% (95% CI: 54.5%, 95.9%) due to false negative results. The corresponding specificity and PPV of the Real-ESRGAN-M images were 51.9 (95% CI: 40.3%, 63.5%) and 31.5% (95% CI: 25.8%, 37.8%) at LAD, 62.5% (95% CI: 40.6%, 81.2%) and 43.8% (95% CI: 30.3%, 58.1%) at LCx, respectively. The area under the receiver operating characteristic curve was also the highest at the RCA with value of 0.76 (95% CI: 0.64, 0.89), 0.84 (95% CI: 0.73, 0.94), 0.85 (95% CI: 0.75, 0.95) and 0.73 (95% CI: 0.58, 0.89), corresponding to original CCTA, Real-ESRGAN-HR, Real-ESRGAN-A and Real-ESRGAN-M images, respectively. This study proves that the finetuned Real-ESRGAN model significantly improves the diagnostic performance of CCTA in assessing calcified plaques.
|