Influences of wheel polygon amplitude on wheel-rail vibration and sound radiation
Wheel polygon amplitude can greatly affect wheel-rail vibration and sound radiation. Based on multi-body dynamics theory, a vehicle-track rigid-flexible coupling dynamics model was established. According to the actual running wear condition of the wheel, the wheel-rail vibration response was calcula...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2023-06-01
|
Series: | Journal of Low Frequency Noise, Vibration and Active Control |
Online Access: | https://doi.org/10.1177/14613484231152850 |
_version_ | 1797818924418465792 |
---|---|
author | Zhikun Song Faming Wang Xiaoyi Hu Di Cheng Qiang Li |
author_facet | Zhikun Song Faming Wang Xiaoyi Hu Di Cheng Qiang Li |
author_sort | Zhikun Song |
collection | DOAJ |
description | Wheel polygon amplitude can greatly affect wheel-rail vibration and sound radiation. Based on multi-body dynamics theory, a vehicle-track rigid-flexible coupling dynamics model was established. According to the actual running wear condition of the wheel, the wheel-rail vibration response was calculated and analyzed (the order of wheel polygons is 20, and the polygon amplitude is 0.01/0.02/0.03/0.04 mm, respectively). Together with the finite element/boundary model of the wheel, the calculated wheel-rail force was used as an external incentive to analyze the effects of polygon amplitude on the time-frequency domain of wheel noise. The research results show that: when the polygon order is 20, with the increase of polygon amplitude, the wheel-rail vertical force and the acceleration of wheel, rail and track slab increase gradually. It’s also found that the rail acceleration is obviously more sensitive to the amplitude than the track slab acceleration, while the vertical displacement of the rail and track slab is less sensitive to the polygon amplitude. At the same amplitude, the closer to the wheel rolling line, the more obvious the sound pressure decreases with the increase of height. At different amplitudes, the sound pressure at different positions will increase with the rise of the polygon amplitude. The root mean square value of sound power increases gradually with the addition of amplitude: When the amplitude changes from 0.01 mm to 0.04 mm, the calculated sound power increases by 4.1 dB. |
first_indexed | 2024-03-13T09:15:19Z |
format | Article |
id | doaj.art-9029ef05e3d54130a2743a4f0ed19717 |
institution | Directory Open Access Journal |
issn | 1461-3484 2048-4046 |
language | English |
last_indexed | 2024-03-13T09:15:19Z |
publishDate | 2023-06-01 |
publisher | SAGE Publishing |
record_format | Article |
series | Journal of Low Frequency Noise, Vibration and Active Control |
spelling | doaj.art-9029ef05e3d54130a2743a4f0ed197172023-05-26T10:04:13ZengSAGE PublishingJournal of Low Frequency Noise, Vibration and Active Control1461-34842048-40462023-06-014210.1177/14613484231152850Influences of wheel polygon amplitude on wheel-rail vibration and sound radiationZhikun SongFaming WangXiaoyi HuDi ChengQiang LiWheel polygon amplitude can greatly affect wheel-rail vibration and sound radiation. Based on multi-body dynamics theory, a vehicle-track rigid-flexible coupling dynamics model was established. According to the actual running wear condition of the wheel, the wheel-rail vibration response was calculated and analyzed (the order of wheel polygons is 20, and the polygon amplitude is 0.01/0.02/0.03/0.04 mm, respectively). Together with the finite element/boundary model of the wheel, the calculated wheel-rail force was used as an external incentive to analyze the effects of polygon amplitude on the time-frequency domain of wheel noise. The research results show that: when the polygon order is 20, with the increase of polygon amplitude, the wheel-rail vertical force and the acceleration of wheel, rail and track slab increase gradually. It’s also found that the rail acceleration is obviously more sensitive to the amplitude than the track slab acceleration, while the vertical displacement of the rail and track slab is less sensitive to the polygon amplitude. At the same amplitude, the closer to the wheel rolling line, the more obvious the sound pressure decreases with the increase of height. At different amplitudes, the sound pressure at different positions will increase with the rise of the polygon amplitude. The root mean square value of sound power increases gradually with the addition of amplitude: When the amplitude changes from 0.01 mm to 0.04 mm, the calculated sound power increases by 4.1 dB.https://doi.org/10.1177/14613484231152850 |
spellingShingle | Zhikun Song Faming Wang Xiaoyi Hu Di Cheng Qiang Li Influences of wheel polygon amplitude on wheel-rail vibration and sound radiation Journal of Low Frequency Noise, Vibration and Active Control |
title | Influences of wheel polygon amplitude on wheel-rail vibration and sound radiation |
title_full | Influences of wheel polygon amplitude on wheel-rail vibration and sound radiation |
title_fullStr | Influences of wheel polygon amplitude on wheel-rail vibration and sound radiation |
title_full_unstemmed | Influences of wheel polygon amplitude on wheel-rail vibration and sound radiation |
title_short | Influences of wheel polygon amplitude on wheel-rail vibration and sound radiation |
title_sort | influences of wheel polygon amplitude on wheel rail vibration and sound radiation |
url | https://doi.org/10.1177/14613484231152850 |
work_keys_str_mv | AT zhikunsong influencesofwheelpolygonamplitudeonwheelrailvibrationandsoundradiation AT famingwang influencesofwheelpolygonamplitudeonwheelrailvibrationandsoundradiation AT xiaoyihu influencesofwheelpolygonamplitudeonwheelrailvibrationandsoundradiation AT dicheng influencesofwheelpolygonamplitudeonwheelrailvibrationandsoundradiation AT qiangli influencesofwheelpolygonamplitudeonwheelrailvibrationandsoundradiation |