Molecular Rubies in Photoredox Catalysis

The molecular ruby [Cr(tpe)2]3+ and the tris(bipyridine) chromium(III) complex [Cr(dmcbpy)3]3+ as well as the tris(bipyrazine)ruthenium(II) complex [Ru(bpz)3]2+ were employed in the visible light-induced radical cation [4+2] cycloaddition (tpe = 1,1,1-tris(pyrid-2-yl)ethane, dmcbpy = 4,4′-dimethoxyc...

全面介紹

書目詳細資料
Main Authors: Steven Sittel, Robert Naumann, Katja Heinze
格式: Article
語言:English
出版: Frontiers Media S.A. 2022-04-01
叢編:Frontiers in Chemistry
主題:
在線閱讀:https://www.frontiersin.org/articles/10.3389/fchem.2022.887439/full
實物特徵
總結:The molecular ruby [Cr(tpe)2]3+ and the tris(bipyridine) chromium(III) complex [Cr(dmcbpy)3]3+ as well as the tris(bipyrazine)ruthenium(II) complex [Ru(bpz)3]2+ were employed in the visible light-induced radical cation [4+2] cycloaddition (tpe = 1,1,1-tris(pyrid-2-yl)ethane, dmcbpy = 4,4′-dimethoxycarbonyl-2,2′-bipyridine, bpz = 2,2′-bipyrazine), while [Cr(ddpd)2]3+ serves as a control system (ddpd = N,N′-dimethyl-N,N′-dipyridin-2-ylpyridine-2,6-diamine). Along with an updated mechanistic proposal for the CrIII driven catalytic cycle based on redox chemistry, Stern-Volmer analyses, UV/Vis/NIR spectroscopic and nanosecond laser flash photolysis studies, we demonstrate that the very weakly absorbing photocatalyst [Cr(tpe)2]3+ outcompetes [Cr(dmcbpy)3]3+ and even [Ru(bpz)3]2+ in particular at low catalyst loadings, which appears contradictory at first sight. The high photostability, the reversible redoxchemistry and the very long excited state lifetime account for the exceptional performance and even reusability of [Cr(tpe)2]3+ in this photoredox catalytic system.
ISSN:2296-2646