Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies

This paper presents two viral infection models that describe dynamics of the virus under the effect of two distinct types of antibodies. The first model considers the population of five compartments, target cells, infected cells, free virus particles, antibodies type-1 and antibodies type-2. The pre...

Full description

Bibliographic Details
Main Authors: Ahmed M. Elaiw, Aeshah A. Raezah, Matuka A. Alshaikh
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/14/3138
Description
Summary:This paper presents two viral infection models that describe dynamics of the virus under the effect of two distinct types of antibodies. The first model considers the population of five compartments, target cells, infected cells, free virus particles, antibodies type-1 and antibodies type-2. The presence of two types of antibodies can be a result of secondary viral infection. In the second model, we incorporate the latently infected cells. We assume that the antibody responsiveness is given by a combination of the self-regulating antibody response and the predator–prey-like antibody response. For both models, we verify the nonnegativity and boundedness of their solutions, then we outline all possible equilibria and prove the global stability by constructing proper Lyapunov functions. The stability of the uninfected equilibrium <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">EQ</mi><mn>0</mn></msup></semantics></math></inline-formula> and infected equilibrium <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">EQ</mi><mo>*</mo></msup></semantics></math></inline-formula> is determined by the basic reproduction number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula>. The theoretical findings are verified through numerical simulations. According to the outcomes, the trajectories of the solutions approach <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">EQ</mi><mn>0</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">EQ</mi><mo>*</mo></msup></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, respectively. We study the sensitivity analysis to show how the values of all the parameters of the suggested model affect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula> under the given data. The impact of including the self-regulating antibody response and latently infected cells in the viral infection model is discussed. We showed that the presence of the self-regulating antibody response reduces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula> and makes the system more stabilizable around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">EQ</mi><mn>0</mn></msup></semantics></math></inline-formula>. Moreover, we established that neglecting the latently infected cells in the viral infection modeling leads to the design of an overflow of antiviral drug therapy.
ISSN:2227-7390