Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell
Abstract Memristor-based neural networks provide an exceptional energy-efficient platform for artificial intelligence (AI), presenting the possibility of self-powered operation when paired with energy harvesters. However, most memristor-based networks rely on analog in-memory computing, necessitatin...
Үндсэн зохиолчид: | Fadi Jebali, Atreya Majumdar, Clément Turck, Kamel-Eddine Harabi, Mathieu-Coumba Faye, Eloi Muhr, Jean-Pierre Walder, Oleksandr Bilousov, Amadéo Michaud, Elisa Vianello, Tifenn Hirtzlin, François Andrieu, Marc Bocquet, Stéphane Collin, Damien Querlioz, Jean-Michel Portal |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
Nature Portfolio
2024-01-01
|
Цуврал: | Nature Communications |
Онлайн хандалт: | https://doi.org/10.1038/s41467-024-44766-6 |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
The logarithmic memristor-based Bayesian machine
-н: Clément Turck, зэрэг
Хэвлэсэн: (2025-02-01) -
Stochastic Computing for Hardware Implementation of Binarized Neural Networks
-н: Tifenn Hirtzlin, зэрэг
Хэвлэсэн: (2019-01-01) -
Digital Biologically Plausible Implementation of Binarized Neural Networks With Differential Hafnium Oxide Resistive Memory Arrays
-н: Tifenn Hirtzlin, зэрэг
Хэвлэсэн: (2020-01-01) -
Synaptic metaplasticity in binarized neural networks
-н: Axel Laborieux, зэрэг
Хэвлэсэн: (2021-05-01) -
Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
-н: Djohan Bonnet, зэрэг
Хэвлэсэн: (2023-11-01)