Summary: | Allocation of channel resources in a cognitive radio system for achieving minimized transmission energy at an increased transmission rate is a challenging research. This paper proposes a resource allocation algorithm based on the meta-heuristic search principle. The proposed algorithm is an improved version of the Group Search Optimizer (GSO), which is a currently developed optimization algorithm that works through imitating the searching behaviour of the animals. The improvement is accomplished through introducing dynamics in the maximum pursuit angle of the GSO members. A cognitive radio system, relying on Orthogonal Frequency Division Multiplexing (OFDM) for its operation, is simulated and the experimentations are carried out for sub-channel allocation. The proposed algorithm is experimentally compared with five renowned optimization algorithms, namely, conventional GSO, Particle Swarm Optimization, Genetic Algorithm, Firefly Algorithm and Artificial Bee Colony algorithm. The obtained results assert the competing performance of the proposed algorithm over the other algorithms. Keywords: Cognitive radio, OFDM, Resource, Allocation, Optimization, GSO
|