A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces

Integral equations and inequalities have an important place in time scales and harmonic analysis. The norm of integral operators is one of the important study topics in harmonic analysis. Using the norms in different variable exponent spaces, the boundedness or compactness of the integral operators...

Full description

Bibliographic Details
Main Author: Lütfi Akın
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/1/7
_version_ 1797414395213512704
author Lütfi Akın
author_facet Lütfi Akın
author_sort Lütfi Akın
collection DOAJ
description Integral equations and inequalities have an important place in time scales and harmonic analysis. The norm of integral operators is one of the important study topics in harmonic analysis. Using the norms in different variable exponent spaces, the boundedness or compactness of the integral operators are examined. However, the norm of integral operators on time scales has been a matter of curiosity to us. In this study, we prove the equivalence of the norm of the restricted centered fractional maximal diamond-<inline-formula><math display="inline"><semantics><mrow><mi>α</mi></mrow></semantics></math></inline-formula> integral operator <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">M</mi><mrow><mi mathvariant="normal">a</mi><mo>,</mo><mi mathvariant="sans-serif">δ</mi></mrow><mi mathvariant="normal">c</mi></msubsup></mrow></semantics></math></inline-formula> to the norm of the centered fractional maximal diamond-<inline-formula><math display="inline"><semantics><mrow><mi>α</mi></mrow></semantics></math></inline-formula> integral operator <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">M</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">c</mi></msubsup></mrow></semantics></math></inline-formula> on time scales with variable exponent Lebesgue spaces. This study will lead to the study of problems such as the boundedness and compactness of integral operators on time scales.
first_indexed 2024-03-09T05:32:27Z
format Article
id doaj.art-9076e1d22af84b549584db4908ff4474
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T05:32:27Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-9076e1d22af84b549584db4908ff44742023-12-03T12:31:23ZengMDPI AGFractal and Fractional2504-31102021-01-0151710.3390/fractalfract5010007A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue SpacesLütfi Akın0Department of Business Administration, Mardin Artuklu University, 47200 Mardin, TurkeyIntegral equations and inequalities have an important place in time scales and harmonic analysis. The norm of integral operators is one of the important study topics in harmonic analysis. Using the norms in different variable exponent spaces, the boundedness or compactness of the integral operators are examined. However, the norm of integral operators on time scales has been a matter of curiosity to us. In this study, we prove the equivalence of the norm of the restricted centered fractional maximal diamond-<inline-formula><math display="inline"><semantics><mrow><mi>α</mi></mrow></semantics></math></inline-formula> integral operator <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">M</mi><mrow><mi mathvariant="normal">a</mi><mo>,</mo><mi mathvariant="sans-serif">δ</mi></mrow><mi mathvariant="normal">c</mi></msubsup></mrow></semantics></math></inline-formula> to the norm of the centered fractional maximal diamond-<inline-formula><math display="inline"><semantics><mrow><mi>α</mi></mrow></semantics></math></inline-formula> integral operator <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">M</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">c</mi></msubsup></mrow></semantics></math></inline-formula> on time scales with variable exponent Lebesgue spaces. This study will lead to the study of problems such as the boundedness and compactness of integral operators on time scales.https://www.mdpi.com/2504-3110/5/1/7time scalesvariable exponentfractional integralmaximal operator
spellingShingle Lütfi Akın
A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces
Fractal and Fractional
time scales
variable exponent
fractional integral
maximal operator
title A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces
title_full A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces
title_fullStr A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces
title_full_unstemmed A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces
title_short A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces
title_sort new approach for the fractional integral operator in time scales with variable exponent lebesgue spaces
topic time scales
variable exponent
fractional integral
maximal operator
url https://www.mdpi.com/2504-3110/5/1/7
work_keys_str_mv AT lutfiakın anewapproachforthefractionalintegraloperatorintimescaleswithvariableexponentlebesguespaces
AT lutfiakın newapproachforthefractionalintegraloperatorintimescaleswithvariableexponentlebesguespaces