Existence of positive solutions to nonlinear elliptic systems involving gradient term and reaction potential

In this note we study the elliptic system $$\displaylines{ -\Delta u = z^p+f(x) \quad \text{in }\Omega , \cr -\Delta z = |\nabla u|^{q}+g(x) \quad \text{in }\Omega , \cr z,u > 0 \quad \text{in }\Omega ,\cr z=u= 0 \quad \text{on }\partial \Omega, }$$ where $\Omega \subset \mathbb{R}^{N}$...

Full description

Bibliographic Details
Main Authors: Ahmed Attar, Rachid Bentifour
Format: Article
Language:English
Published: Texas State University 2017-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2017/113/abstr.html
Description
Summary:In this note we study the elliptic system $$\displaylines{ -\Delta u = z^p+f(x) \quad \text{in }\Omega , \cr -\Delta z = |\nabla u|^{q}+g(x) \quad \text{in }\Omega , \cr z,u > 0 \quad \text{in }\Omega ,\cr z=u= 0 \quad \text{on }\partial \Omega, }$$ where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain, p>0, $0<q\le 2$ with pq<1 and f,g are two nonnegative measurable functions. The main result of this work is to analyze the interaction between the potential and the gradient terms in order to get the existence of a positive solution.
ISSN:1072-6691