A spectral model for turbulence and microphysics dynamics in an ice cloud
A one-dimensional, nine-mode spectral model for temperature, velocity, and the mixing ratios of suspended and precipitating ice-particle components is shown to be consistent with ice-cloud observations. The observations include Doppler radar time-series measurements o...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
1996-01-01
|
Series: | Nonlinear Processes in Geophysics |
Online Access: | http://www.nonlin-processes-geophys.net/3/23/1996/npg-3-23-1996.pdf |
_version_ | 1819084763171913728 |
---|---|
author | A. J. Palmer |
author_facet | A. J. Palmer |
author_sort | A. J. Palmer |
collection | DOAJ |
description | A one-dimensional, nine-mode spectral model for temperature, velocity, and the mixing ratios of suspended and precipitating ice-particle components is shown to be consistent with ice-cloud observations. The observations include Doppler radar time-series measurements of a single winter ice cloud and direct measurements of mean particle size vs. icewater content for a set of ice clouds. Fitting of the model to the Doppler vertical-velocity measurements allows a prediction to be made of the vertical scale and turbulent Prandtl number active in the ice-cloud vertical motions. The model is then used to explore the question of how turbulence and gravity-wave motions affect the microphysical properties of an ice cloud. The model predicts interesting dynamical effects on the mixing ratios due to these motions, but no significant effects on the time-averaged microphysical quantities. |
first_indexed | 2024-12-21T20:53:37Z |
format | Article |
id | doaj.art-9097314753b34bf78346b9b3c87e2d27 |
institution | Directory Open Access Journal |
issn | 1023-5809 1607-7946 |
language | English |
last_indexed | 2024-12-21T20:53:37Z |
publishDate | 1996-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Nonlinear Processes in Geophysics |
spelling | doaj.art-9097314753b34bf78346b9b3c87e2d272022-12-21T18:50:40ZengCopernicus PublicationsNonlinear Processes in Geophysics1023-58091607-79461996-01-01312328A spectral model for turbulence and microphysics dynamics in an ice cloudA. J. PalmerA one-dimensional, nine-mode spectral model for temperature, velocity, and the mixing ratios of suspended and precipitating ice-particle components is shown to be consistent with ice-cloud observations. The observations include Doppler radar time-series measurements of a single winter ice cloud and direct measurements of mean particle size vs. icewater content for a set of ice clouds. Fitting of the model to the Doppler vertical-velocity measurements allows a prediction to be made of the vertical scale and turbulent Prandtl number active in the ice-cloud vertical motions. The model is then used to explore the question of how turbulence and gravity-wave motions affect the microphysical properties of an ice cloud. The model predicts interesting dynamical effects on the mixing ratios due to these motions, but no significant effects on the time-averaged microphysical quantities.http://www.nonlin-processes-geophys.net/3/23/1996/npg-3-23-1996.pdf |
spellingShingle | A. J. Palmer A spectral model for turbulence and microphysics dynamics in an ice cloud Nonlinear Processes in Geophysics |
title | A spectral model for turbulence and microphysics dynamics in an ice cloud |
title_full | A spectral model for turbulence and microphysics dynamics in an ice cloud |
title_fullStr | A spectral model for turbulence and microphysics dynamics in an ice cloud |
title_full_unstemmed | A spectral model for turbulence and microphysics dynamics in an ice cloud |
title_short | A spectral model for turbulence and microphysics dynamics in an ice cloud |
title_sort | spectral model for turbulence and microphysics dynamics in an ice cloud |
url | http://www.nonlin-processes-geophys.net/3/23/1996/npg-3-23-1996.pdf |
work_keys_str_mv | AT ajpalmer aspectralmodelforturbulenceandmicrophysicsdynamicsinanicecloud AT ajpalmer spectralmodelforturbulenceandmicrophysicsdynamicsinanicecloud |