Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator

We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator’s 4 vacuum-insulator stacks, 6 curr...

Full description

Bibliographic Details
Main Authors: T. C. Wagoner, W. A. Stygar, H. C. Ives, T. L. Gilliland, R. B. Spielman, M. F. Johnson, P. G. Reynolds, J. K. Moore, R. L. Mourning, D. L. Fehl, K. E. Androlewicz, J. E. Bailey, R. S. Broyles, T. A. Dinwoodie, G. L. Donovan, M. E. Dudley, K. D. Hahn, A. A. Kim, J. R. Lee, R. J. Leeper, G. T. Leifeste, J. A. Melville, J. A. Mills, L. P. Mix, W. B. S. Moore, B. P. Peyton, J. L. Porter, G. A. Rochau, G. E. Rochau, M. E. Savage, J. F. Seamen, J. D. Serrano, A. W. Sharpe, R. W. Shoup, J. S. Slopek, C. S. Speas, K. W. Struve, D. M. Van De Valde, R. M. Woodring
Format: Article
Language:English
Published: American Physical Society 2008-10-01
Series:Physical Review Special Topics. Accelerators and Beams
Online Access:http://doi.org/10.1103/PhysRevSTAB.11.100401
_version_ 1811298293200715776
author T. C. Wagoner
W. A. Stygar
H. C. Ives
T. L. Gilliland
R. B. Spielman
M. F. Johnson
P. G. Reynolds
J. K. Moore
R. L. Mourning
D. L. Fehl
K. E. Androlewicz
J. E. Bailey
R. S. Broyles
T. A. Dinwoodie
G. L. Donovan
M. E. Dudley
K. D. Hahn
A. A. Kim
J. R. Lee
R. J. Leeper
G. T. Leifeste
J. A. Melville
J. A. Mills
L. P. Mix
W. B. S. Moore
B. P. Peyton
J. L. Porter
G. A. Rochau
G. E. Rochau
M. E. Savage
J. F. Seamen
J. D. Serrano
A. W. Sharpe
R. W. Shoup
J. S. Slopek
C. S. Speas
K. W. Struve
D. M. Van De Valde
R. M. Woodring
author_facet T. C. Wagoner
W. A. Stygar
H. C. Ives
T. L. Gilliland
R. B. Spielman
M. F. Johnson
P. G. Reynolds
J. K. Moore
R. L. Mourning
D. L. Fehl
K. E. Androlewicz
J. E. Bailey
R. S. Broyles
T. A. Dinwoodie
G. L. Donovan
M. E. Dudley
K. D. Hahn
A. A. Kim
J. R. Lee
R. J. Leeper
G. T. Leifeste
J. A. Melville
J. A. Mills
L. P. Mix
W. B. S. Moore
B. P. Peyton
J. L. Porter
G. A. Rochau
G. E. Rochau
M. E. Savage
J. F. Seamen
J. D. Serrano
A. W. Sharpe
R. W. Shoup
J. S. Slopek
C. S. Speas
K. W. Struve
D. M. Van De Valde
R. M. Woodring
author_sort T. C. Wagoner
collection DOAJ
description We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator’s 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator’s 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator’s inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator’s power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-Ω balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-Ω cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair are not combined in a balun; they are instead numerically processed for common-mode-noise rejection after digitization. All the current monitors are calibrated on a 76-cm-diameter axisymmetric radial transmission line that is driven by a 10-kA current pulse. The reference current is measured by a current-viewing resistor (CVR). The stack voltage monitors are also differential-output gauges, consisting of one 1.8-cm-diameter D-dot sensor and one null sensor. Hence, each voltage monitor is also a differential detector with two output signals, processed as described above. The voltage monitors are calibrated in situ at 1.5 MV on dedicated accelerator shots with a short-circuit load. Faraday’s law of induction is used to generate the reference voltage: currents are obtained from calibrated outer-MITL B-dot monitors, and inductances from the system geometry. In this way, both current and voltage measurements are traceable to a single CVR. Dependable and consistent measurements are thus obtained with this system of calibrated diagnostics. On accelerator shots that deliver 22 MA to a low-impedance z-pinch load, the peak lineal current densities at the stack, outer-MITL, and inner-MITL monitor locations are 0.5, 1, and 58  MA/m, respectively. On such shots the peak currents measured at these three locations agree to within 1%.
first_indexed 2024-04-13T06:17:22Z
format Article
id doaj.art-90bc3e4101c64c8e8c46e9839aa7241a
institution Directory Open Access Journal
issn 1098-4402
language English
last_indexed 2024-04-13T06:17:22Z
publishDate 2008-10-01
publisher American Physical Society
record_format Article
series Physical Review Special Topics. Accelerators and Beams
spelling doaj.art-90bc3e4101c64c8e8c46e9839aa7241a2022-12-22T02:58:47ZengAmerican Physical SocietyPhysical Review Special Topics. Accelerators and Beams1098-44022008-10-01111010040110.1103/PhysRevSTAB.11.100401Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power acceleratorT. C. WagonerW. A. StygarH. C. IvesT. L. GillilandR. B. SpielmanM. F. JohnsonP. G. ReynoldsJ. K. MooreR. L. MourningD. L. FehlK. E. AndrolewiczJ. E. BaileyR. S. BroylesT. A. DinwoodieG. L. DonovanM. E. DudleyK. D. HahnA. A. KimJ. R. LeeR. J. LeeperG. T. LeifesteJ. A. MelvilleJ. A. MillsL. P. MixW. B. S. MooreB. P. PeytonJ. L. PorterG. A. RochauG. E. RochauM. E. SavageJ. F. SeamenJ. D. SerranoA. W. SharpeR. W. ShoupJ. S. SlopekC. S. SpeasK. W. StruveD. M. Van De ValdeR. M. WoodringWe have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator’s 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator’s 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator’s inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator’s power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-Ω balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-Ω cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair are not combined in a balun; they are instead numerically processed for common-mode-noise rejection after digitization. All the current monitors are calibrated on a 76-cm-diameter axisymmetric radial transmission line that is driven by a 10-kA current pulse. The reference current is measured by a current-viewing resistor (CVR). The stack voltage monitors are also differential-output gauges, consisting of one 1.8-cm-diameter D-dot sensor and one null sensor. Hence, each voltage monitor is also a differential detector with two output signals, processed as described above. The voltage monitors are calibrated in situ at 1.5 MV on dedicated accelerator shots with a short-circuit load. Faraday’s law of induction is used to generate the reference voltage: currents are obtained from calibrated outer-MITL B-dot monitors, and inductances from the system geometry. In this way, both current and voltage measurements are traceable to a single CVR. Dependable and consistent measurements are thus obtained with this system of calibrated diagnostics. On accelerator shots that deliver 22 MA to a low-impedance z-pinch load, the peak lineal current densities at the stack, outer-MITL, and inner-MITL monitor locations are 0.5, 1, and 58  MA/m, respectively. On such shots the peak currents measured at these three locations agree to within 1%.http://doi.org/10.1103/PhysRevSTAB.11.100401
spellingShingle T. C. Wagoner
W. A. Stygar
H. C. Ives
T. L. Gilliland
R. B. Spielman
M. F. Johnson
P. G. Reynolds
J. K. Moore
R. L. Mourning
D. L. Fehl
K. E. Androlewicz
J. E. Bailey
R. S. Broyles
T. A. Dinwoodie
G. L. Donovan
M. E. Dudley
K. D. Hahn
A. A. Kim
J. R. Lee
R. J. Leeper
G. T. Leifeste
J. A. Melville
J. A. Mills
L. P. Mix
W. B. S. Moore
B. P. Peyton
J. L. Porter
G. A. Rochau
G. E. Rochau
M. E. Savage
J. F. Seamen
J. D. Serrano
A. W. Sharpe
R. W. Shoup
J. S. Slopek
C. S. Speas
K. W. Struve
D. M. Van De Valde
R. M. Woodring
Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator
Physical Review Special Topics. Accelerators and Beams
title Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator
title_full Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator
title_fullStr Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator
title_full_unstemmed Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator
title_short Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator
title_sort differential output b dot and d dot monitors for current and voltage measurements on a 20 ma 3 mv pulsed power accelerator
url http://doi.org/10.1103/PhysRevSTAB.11.100401
work_keys_str_mv AT tcwagoner differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT wastygar differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT hcives differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT tlgilliland differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT rbspielman differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT mfjohnson differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT pgreynolds differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT jkmoore differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT rlmourning differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT dlfehl differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT keandrolewicz differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT jebailey differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT rsbroyles differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT tadinwoodie differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT gldonovan differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT medudley differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT kdhahn differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT aakim differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT jrlee differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT rjleeper differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT gtleifeste differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT jamelville differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT jamills differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT lpmix differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT wbsmoore differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT bppeyton differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT jlporter differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT garochau differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT gerochau differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT mesavage differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT jfseamen differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT jdserrano differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT awsharpe differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT rwshoup differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT jsslopek differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT csspeas differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT kwstruve differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT dmvandevalde differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator
AT rmwoodring differentialoutputbdotandddotmonitorsforcurrentandvoltagemeasurementsona20ma3mvpulsedpoweraccelerator