Slant Curves in Contact Lorentzian Manifolds with CR Structures

In this paper, we first find the properties of the generalized Tanaka&#8722;Webster connection in a contact Lorentzian manifold. Next, we find that a necessary and sufficient condition for the <inline-formula> <math display="inline"> <semantics> <mover> <mo&g...

Full description

Bibliographic Details
Main Author: Ji-Eun Lee
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/1/46
_version_ 1829495408526622720
author Ji-Eun Lee
author_facet Ji-Eun Lee
author_sort Ji-Eun Lee
collection DOAJ
description In this paper, we first find the properties of the generalized Tanaka&#8722;Webster connection in a contact Lorentzian manifold. Next, we find that a necessary and sufficient condition for the <inline-formula> <math display="inline"> <semantics> <mover> <mo>&#8711;</mo> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula>-geodesic is a magnetic curve (for &#8711;) along slant curves. Finally, we prove that when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mo>&#8804;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, there does not exist a non-geodesic slant Frenet curve satisfying the <inline-formula> <math display="inline"> <semantics> <mover> <mo>&#8711;</mo> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula>-Jacobi equations for the <inline-formula> <math display="inline"> <semantics> <mover> <mo>&#8711;</mo> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula>-geodesic vector fields in <i>M</i>. Thus, we construct the explicit parametric equations of pseudo-Hermitian pseudo-helices in Lorentzian space forms <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>M</mi> <mn>1</mn> <mn>3</mn> </msubsup> <mrow> <mo stretchy="false">(</mo> <mover> <mi>H</mi> <mo stretchy="false">^</mo> </mover> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mover> <mi>H</mi> <mo stretchy="false">^</mo> </mover> <mo>=</mo> <mn>2</mn> <mi>c</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>.
first_indexed 2024-12-16T07:10:24Z
format Article
id doaj.art-90bcac740210487789caf435f7826dc5
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-16T07:10:24Z
publishDate 2020-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-90bcac740210487789caf435f7826dc52022-12-21T22:39:56ZengMDPI AGMathematics2227-73902020-01-01814610.3390/math8010046math8010046Slant Curves in Contact Lorentzian Manifolds with CR StructuresJi-Eun Lee0Institute of Basic Science, Chonnam National University, Gwangju 61186, KoreaIn this paper, we first find the properties of the generalized Tanaka&#8722;Webster connection in a contact Lorentzian manifold. Next, we find that a necessary and sufficient condition for the <inline-formula> <math display="inline"> <semantics> <mover> <mo>&#8711;</mo> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula>-geodesic is a magnetic curve (for &#8711;) along slant curves. Finally, we prove that when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>c</mi> <mo>&#8804;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, there does not exist a non-geodesic slant Frenet curve satisfying the <inline-formula> <math display="inline"> <semantics> <mover> <mo>&#8711;</mo> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula>-Jacobi equations for the <inline-formula> <math display="inline"> <semantics> <mover> <mo>&#8711;</mo> <mo stretchy="false">^</mo> </mover> </semantics> </math> </inline-formula>-geodesic vector fields in <i>M</i>. Thus, we construct the explicit parametric equations of pseudo-Hermitian pseudo-helices in Lorentzian space forms <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>M</mi> <mn>1</mn> <mn>3</mn> </msubsup> <mrow> <mo stretchy="false">(</mo> <mover> <mi>H</mi> <mo stretchy="false">^</mo> </mover> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mover> <mi>H</mi> <mo stretchy="false">^</mo> </mover> <mo>=</mo> <mn>2</mn> <mi>c</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/8/1/46slant curvesjacobi equationcr structurelorentzian sasakian space forms
spellingShingle Ji-Eun Lee
Slant Curves in Contact Lorentzian Manifolds with CR Structures
Mathematics
slant curves
jacobi equation
cr structure
lorentzian sasakian space forms
title Slant Curves in Contact Lorentzian Manifolds with CR Structures
title_full Slant Curves in Contact Lorentzian Manifolds with CR Structures
title_fullStr Slant Curves in Contact Lorentzian Manifolds with CR Structures
title_full_unstemmed Slant Curves in Contact Lorentzian Manifolds with CR Structures
title_short Slant Curves in Contact Lorentzian Manifolds with CR Structures
title_sort slant curves in contact lorentzian manifolds with cr structures
topic slant curves
jacobi equation
cr structure
lorentzian sasakian space forms
url https://www.mdpi.com/2227-7390/8/1/46
work_keys_str_mv AT jieunlee slantcurvesincontactlorentzianmanifoldswithcrstructures