Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay

In this paper, we consider a system of random impulsive differential equations with infinite delay. When utilizing the nonlinear variation of Leray–Schauder’s fixed-point principles together with a technique based on separable vector-valued metrics to establish sufficient conditions for the existenc...

Full description

Bibliographic Details
Main Authors: Abdelkader Moumen, Fatima Zohra Ladrani, Mohamed Ferhat, Amin Benaissa Cherif, Mohamed Bouye, Keltoum Bouhali
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/8/1/10
_version_ 1827372290095972352
author Abdelkader Moumen
Fatima Zohra Ladrani
Mohamed Ferhat
Amin Benaissa Cherif
Mohamed Bouye
Keltoum Bouhali
author_facet Abdelkader Moumen
Fatima Zohra Ladrani
Mohamed Ferhat
Amin Benaissa Cherif
Mohamed Bouye
Keltoum Bouhali
author_sort Abdelkader Moumen
collection DOAJ
description In this paper, we consider a system of random impulsive differential equations with infinite delay. When utilizing the nonlinear variation of Leray–Schauder’s fixed-point principles together with a technique based on separable vector-valued metrics to establish sufficient conditions for the existence of solutions, under suitable assumptions on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Y</mi><mn>1</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Y</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϖ</mi><mn>1</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϖ</mi><mn>2</mn></msub></semantics></math></inline-formula>, which greatly enriched the existence literature on this system, there is, however, no hope to discuss the uniqueness result in a convex case. In the present study, we analyzed the influence of the impulsive and infinite delay on the solutions to our system. In addition, to the best of our acknowledge, there is no result concerning coupled random system in the presence of impulsive and infinite delay.
first_indexed 2024-03-08T10:55:26Z
format Article
id doaj.art-90c1664605cd44db8422f59dcee83f82
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-08T10:55:26Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-90c1664605cd44db8422f59dcee83f822024-01-26T16:35:09ZengMDPI AGFractal and Fractional2504-31102023-12-01811010.3390/fractalfract8010010Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite DelayAbdelkader Moumen0Fatima Zohra Ladrani1Mohamed Ferhat2Amin Benaissa Cherif3Mohamed Bouye4Keltoum Bouhali5Department of Mathematics, College of Science, University of Ha’il, Ha’il 55473, Saudi ArabiaDepartment of Exact Sciences, Higher Training Teacher’s School of Oran Ammour Ahmed (ENSO), Oran 31000, AlgeriaDepartment of Mathematics, Faculty of Mathematics and Informatics, University of Science and Technology of Oran Mohamed-Boudiaf (USTOMB), El Mnaouar, BP 1505, Bir El Djir, Oran 31000, AlgeriaDepartment of Mathematics, Faculty of Mathematics and Informatics, University of Science and Technology of Oran Mohamed-Boudiaf (USTOMB), El Mnaouar, BP 1505, Bir El Djir, Oran 31000, AlgeriaDepartment of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi ArabiaDepartment of Mathematics, College of Sciences and Arts, Qassim University, Ar-Rass 51921, Saudi ArabiaIn this paper, we consider a system of random impulsive differential equations with infinite delay. When utilizing the nonlinear variation of Leray–Schauder’s fixed-point principles together with a technique based on separable vector-valued metrics to establish sufficient conditions for the existence of solutions, under suitable assumptions on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Y</mi><mn>1</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Y</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϖ</mi><mn>1</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϖ</mi><mn>2</mn></msub></semantics></math></inline-formula>, which greatly enriched the existence literature on this system, there is, however, no hope to discuss the uniqueness result in a convex case. In the present study, we analyzed the influence of the impulsive and infinite delay on the solutions to our system. In addition, to the best of our acknowledge, there is no result concerning coupled random system in the presence of impulsive and infinite delay.https://www.mdpi.com/2504-3110/8/1/10iterative methodsexistence of solutionsimpulsive equationsgeneralized banach spaceSchaefer’s fixed point theoremdifferential equations
spellingShingle Abdelkader Moumen
Fatima Zohra Ladrani
Mohamed Ferhat
Amin Benaissa Cherif
Mohamed Bouye
Keltoum Bouhali
Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay
Fractal and Fractional
iterative methods
existence of solutions
impulsive equations
generalized banach space
Schaefer’s fixed point theorem
differential equations
title Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay
title_full Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay
title_fullStr Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay
title_full_unstemmed Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay
title_short Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay
title_sort existence result for coupled random first order impulsive differential equations with infinite delay
topic iterative methods
existence of solutions
impulsive equations
generalized banach space
Schaefer’s fixed point theorem
differential equations
url https://www.mdpi.com/2504-3110/8/1/10
work_keys_str_mv AT abdelkadermoumen existenceresultforcoupledrandomfirstorderimpulsivedifferentialequationswithinfinitedelay
AT fatimazohraladrani existenceresultforcoupledrandomfirstorderimpulsivedifferentialequationswithinfinitedelay
AT mohamedferhat existenceresultforcoupledrandomfirstorderimpulsivedifferentialequationswithinfinitedelay
AT aminbenaissacherif existenceresultforcoupledrandomfirstorderimpulsivedifferentialequationswithinfinitedelay
AT mohamedbouye existenceresultforcoupledrandomfirstorderimpulsivedifferentialequationswithinfinitedelay
AT keltoumbouhali existenceresultforcoupledrandomfirstorderimpulsivedifferentialequationswithinfinitedelay