Analytical Solutions of Boundary Values Problem of 2D and 3D Poisson and Biharmonic Equations by Homotopy Decomposition Method

The homotopy decomposition method, a relatively new analytical method, is used to solve the 2D and 3D Poisson equations and biharmonic equations. The method is chosen because it does not require the linearization or assumptions of weak nonlinearity, the solutions are generated in the form of general...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолчид: Abdon Atangana, Adem Kılıçman
Формат: Өгүүллэг
Хэл сонгох:English
Хэвлэсэн: Wiley 2013-01-01
Цуврал:Abstract and Applied Analysis
Онлайн хандалт:http://dx.doi.org/10.1155/2013/380484
Тодорхойлолт
Тойм:The homotopy decomposition method, a relatively new analytical method, is used to solve the 2D and 3D Poisson equations and biharmonic equations. The method is chosen because it does not require the linearization or assumptions of weak nonlinearity, the solutions are generated in the form of general solution, and it is more realistic compared to the method of simplifying the physical problems. The method does not require any corrected function or any Lagrange multiplier and it avoids repeated terms in the series solutions compared to the existing decomposition method including the variational iteration method, the Adomian decomposition method, and Homotopy perturbation method. The approximated solutions obtained converge to the exact solution as tends to infinity.
ISSN:1085-3375
1687-0409