Analytical Solutions of Boundary Values Problem of 2D and 3D Poisson and Biharmonic Equations by Homotopy Decomposition Method
The homotopy decomposition method, a relatively new analytical method, is used to solve the 2D and 3D Poisson equations and biharmonic equations. The method is chosen because it does not require the linearization or assumptions of weak nonlinearity, the solutions are generated in the form of general...
Prif Awduron: | Abdon Atangana, Adem Kılıçman |
---|---|
Fformat: | Erthygl |
Iaith: | English |
Cyhoeddwyd: |
Wiley
2013-01-01
|
Cyfres: | Abstract and Applied Analysis |
Mynediad Ar-lein: | http://dx.doi.org/10.1155/2013/380484 |
Eitemau Tebyg
-
Analytical solutions of boundary values problem of 2D and 3D Poisson and biharmonic equations by homotopy decomposition method
gan: Atangana, Abdon, et al.
Cyhoeddwyd: (2013) -
Analytical solutions of the space-time fractional derivative of advection dispersion equation
gan: Atangana, Abdon, et al.
Cyhoeddwyd: (2013) -
Analytic Solutions to the Laplace, Poisson, and Biharmonic Equations with Internal Boundaries: Theory and Application to Microfluidic Dynamics
gan: Zhang, Chengzhao “Richard”
Cyhoeddwyd: (2022) -
Extension of Homotopy decomposition method (HDM) to coupled Nonlinear van der Pol Type’s equation
gan: Abdon Atangana, et al.
Cyhoeddwyd: (2014-12-01) -
Uniqueness of solutions to boundary-value problems for the biharmonic equation in a ball
gan: Valery V. Karachik, et al.
Cyhoeddwyd: (2015-09-01)