Activation of the PDGFRα-Nrf2 pathway mediates impaired adipocyte differentiation in bone marrow mesenchymal stem cells lacking Nck1

Abstract Background The limited options to treat obesity and its complications result from an incomplete understanding of the underlying molecular mechanisms regulating white adipose tissue development, including adipocyte hypertrophy (increase in size) and hyperplasia (increase in number through ad...

Full description

Bibliographic Details
Main Authors: Nida Haider, Louise Larose
Format: Article
Language:English
Published: BMC 2020-02-01
Series:Cell Communication and Signaling
Subjects:
Online Access:https://doi.org/10.1186/s12964-019-0506-4
Description
Summary:Abstract Background The limited options to treat obesity and its complications result from an incomplete understanding of the underlying molecular mechanisms regulating white adipose tissue development, including adipocyte hypertrophy (increase in size) and hyperplasia (increase in number through adipogenesis). We recently demonstrated that lack of the adaptor protein Nck1 in mice is associated with reduced adiposity and impaired adipocyte differentiation. In agreement, Nck1 depletion in 3 T3-L1 cells also attenuates adipocyte differentiation by enhancing PDGFRα activation and signaling. This is accompanied by higher expression of PDGF-A, a specific PDGFRα ligand, that may contribute to enhanced activation of PDGFRα signaling in the absence of Nck1 in white adipose tissue. However, whether Nck1 deficiency also impairs adipogenic differentiation in bone marrow still remains to be determined. Methods To address this point, Nck1-deficient derived bone marrow mesenchymal stem/stromal cells (BM-MSCs) and C3H10T1/2 mesenchymal stem cells were differentiated into adipocytes in vitro. Genes and proteins expression in these cellular models were determined using qPCR and western blotting respectively. Pharmacological approaches were used to assess a role for Nrf2 in mediating Nck1 deficiency effect on mesenchymal stem cells adipocyte differentiation. Results Nck1 deficiency in both BM-MSCs and C3H10T1/2 results in impaired adipocyte differentiation, accompanied by increased activation of the transcription factor Nrf2, as shown by increased mRNA levels of Nrf2 target genes, including PDGF-A. Using pharmacological activator and inhibitor of Nrf2, we further provide evidence that Nrf2 is an important player in PDGFRα signaling that mediates expression of PDGF-A and impaired adipogenesis in Nck1-deficient BM-MSCs and C3H10T1/2 cells. Conclusion This study demonstrates that Nck1 deficiency in mesenchymal stem cells impairs adipogenesis through activation of the PDGFRα-Nrf2 anti-adipogenic signaling pathway. Video Abstract.
ISSN:1478-811X