Fail-safe design and analysis for the guide vane of a hydro turbine
A design for the fail-safe mechanism of a guide vane in a Francis-type hydro turbine is proposed and analyzed. The mechanism that is based on a shear pin as a sacrificial component was designed to remain simple. Unlike the requirements of conventional designs, a shear pin must be able to withstand s...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2016-07-01
|
Series: | Advances in Mechanical Engineering |
Online Access: | https://doi.org/10.1177/1687814016658178 |
_version_ | 1818176384006094848 |
---|---|
author | Bentang Arief Budiman Djoko Suharto Indra Djodikusumo Muhammad Aziz Firman Bagja Juangsa |
author_facet | Bentang Arief Budiman Djoko Suharto Indra Djodikusumo Muhammad Aziz Firman Bagja Juangsa |
author_sort | Bentang Arief Budiman |
collection | DOAJ |
description | A design for the fail-safe mechanism of a guide vane in a Francis-type hydro turbine is proposed and analyzed. The mechanism that is based on a shear pin as a sacrificial component was designed to remain simple. Unlike the requirements of conventional designs, a shear pin must be able to withstand static and dynamic loads but must fail under a certain overload that could damage a guide vane. An accurate load determination and selection of the shear pin material were demonstrated. The static load for various opening angles of the guide vane were calculated using the computational fluid dynamics Fluent and finite element method Ansys programs. Furthermore, simulations for overload and dynamic load due to the waterhammer phenomenon were also conducted. The results of load calculations were used to select an appropriate shear pin material. Quasi-static shear tests were performed for two shear pins of aluminum alloy Al2024 subjected to different aging treatments (i.e. artificial and natural aging). The test results indicated that the Al2024 treated by natural aging is an appropriate material for a shear pin designed to function as a fail-safe mechanism for the guide vanes of a Francis-type hydro turbine. |
first_indexed | 2024-12-11T20:15:20Z |
format | Article |
id | doaj.art-9101b70c38984118a5448dcfe2d52295 |
institution | Directory Open Access Journal |
issn | 1687-8140 |
language | English |
last_indexed | 2024-12-11T20:15:20Z |
publishDate | 2016-07-01 |
publisher | SAGE Publishing |
record_format | Article |
series | Advances in Mechanical Engineering |
spelling | doaj.art-9101b70c38984118a5448dcfe2d522952022-12-22T00:52:13ZengSAGE PublishingAdvances in Mechanical Engineering1687-81402016-07-01810.1177/168781401665817810.1177_1687814016658178Fail-safe design and analysis for the guide vane of a hydro turbineBentang Arief Budiman0Djoko Suharto1Indra Djodikusumo2Muhammad Aziz3Firman Bagja Juangsa4Department of Mechanical Engineering, Institut Teknologi Bandung, Bandung, IndonesiaDepartment of Mechanical Engineering, Institut Teknologi Bandung, Bandung, IndonesiaDepartment of Mechanical Engineering, Institut Teknologi Bandung, Bandung, IndonesiaInstitute of Innovative Research, Tokyo Institute of Technology, Tokyo, JapanDepartment of Mechanical Sciences and Engineering, Tokyo Institute of Technology, Tokyo, JapanA design for the fail-safe mechanism of a guide vane in a Francis-type hydro turbine is proposed and analyzed. The mechanism that is based on a shear pin as a sacrificial component was designed to remain simple. Unlike the requirements of conventional designs, a shear pin must be able to withstand static and dynamic loads but must fail under a certain overload that could damage a guide vane. An accurate load determination and selection of the shear pin material were demonstrated. The static load for various opening angles of the guide vane were calculated using the computational fluid dynamics Fluent and finite element method Ansys programs. Furthermore, simulations for overload and dynamic load due to the waterhammer phenomenon were also conducted. The results of load calculations were used to select an appropriate shear pin material. Quasi-static shear tests were performed for two shear pins of aluminum alloy Al2024 subjected to different aging treatments (i.e. artificial and natural aging). The test results indicated that the Al2024 treated by natural aging is an appropriate material for a shear pin designed to function as a fail-safe mechanism for the guide vanes of a Francis-type hydro turbine.https://doi.org/10.1177/1687814016658178 |
spellingShingle | Bentang Arief Budiman Djoko Suharto Indra Djodikusumo Muhammad Aziz Firman Bagja Juangsa Fail-safe design and analysis for the guide vane of a hydro turbine Advances in Mechanical Engineering |
title | Fail-safe design and analysis for the guide vane of a hydro turbine |
title_full | Fail-safe design and analysis for the guide vane of a hydro turbine |
title_fullStr | Fail-safe design and analysis for the guide vane of a hydro turbine |
title_full_unstemmed | Fail-safe design and analysis for the guide vane of a hydro turbine |
title_short | Fail-safe design and analysis for the guide vane of a hydro turbine |
title_sort | fail safe design and analysis for the guide vane of a hydro turbine |
url | https://doi.org/10.1177/1687814016658178 |
work_keys_str_mv | AT bentangariefbudiman failsafedesignandanalysisfortheguidevaneofahydroturbine AT djokosuharto failsafedesignandanalysisfortheguidevaneofahydroturbine AT indradjodikusumo failsafedesignandanalysisfortheguidevaneofahydroturbine AT muhammadaziz failsafedesignandanalysisfortheguidevaneofahydroturbine AT firmanbagjajuangsa failsafedesignandanalysisfortheguidevaneofahydroturbine |