Silver-Catalyzed Decarboxylative Acylation of Isocyanides Accesses to α-Ketoamides with Air as a Sole Oxidant

α-Ketoamide moieties, as privileged units, may represent a valuable option to develop compounds with favorable biological activities, such as low toxicity, promising PK and drug-like properties. An efficient silver-catalyzed decarboxylative acylation of α-oxocarboxylic acids with isocyanides was dev...

Full description

Bibliographic Details
Main Authors: Jia Xu, Xue Li, Xing-Yu Chen, Yu-Ting He, Jie Lei, Zhong-Zhu Chen, Zhi-Gang Xu
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/14/5342
Description
Summary:α-Ketoamide moieties, as privileged units, may represent a valuable option to develop compounds with favorable biological activities, such as low toxicity, promising PK and drug-like properties. An efficient silver-catalyzed decarboxylative acylation of α-oxocarboxylic acids with isocyanides was developed to derivatize the α-ketoamide functional group via a multicomponent reaction (MCR) cascade sequence in one pot. A series of α-ketoamides was synthesized with three components of isocyanides, aromatic α-oxocarboxylic acid analogues and water in moderate yields. Based on the research, the silver-catalyzed decarboxylative acylation confirmed that an oxygen atom of the amide moiety was derived from the water and air as a sole oxidant for the whole process.
ISSN:1420-3049