Limit behaviour of constant distance boundaries of Jordan curves
For a Jordan curve Γ in the complex plane, its constant distance boundary Γλ is an inflated version of Γ. A flatness condition, (1/2,r0)-chordal property, guarantees that Γλ is a Jordan curve when λ is not too large. We prove that Γλ converges to Γ, as λ approaching to 0, in the sense of Hausdorff d...
Auteurs principaux: | Feifei Qu, Xin Wei |
---|---|
Format: | Article |
Langue: | English |
Publié: |
AIMS Press
2022-04-01
|
Collection: | AIMS Mathematics |
Sujets: | |
Accès en ligne: | https://www.aimspress.com/article/doi/10.3934/math.2022631?viewType=HTML |
Documents similaires
-
An approximation method for convolution curves of regular curves and ellipses
par: Young Joon Ahn
Publié: (2024-12-01) -
A converse to the jordan curve theorem for digital durves/
par: Rosenfeld, Azriel -
Extent of Teachers' Knowledge of Required Skills in Distance Education in Jordan during the Coronavirus Pandemic
par: Suhair Mohammad Abdallah Alkhwaja, et autres
Publié: (2022-09-01) -
Gromov - Hausdorff Convergence and Topological Stability for Actions on Wasserstein Hyperspaces
par: M. A. Morawo, et autres
Publié: (2024-11-01) -
Edge Eigenface Weighted Hausdorff Distance for Face Recognition
par: Huachun Tan, et autres
Publié: (2011-12-01)