Escherichia coli survival in response to ciprofloxacin antibiotic stress correlates with increased nucleoid length and effective misfolded protein management

The evolution of antibiotic resistance is a fundamental problem in disease management but is rarely quantified on a single-cell level owing to challenges associated with capturing the spatial and temporal variation across a population. To evaluate cell biological phenotypic responses, we tracked the...

Full description

Bibliographic Details
Main Authors: George Butler, Julia Bos, Robert H. Austin, Sarah R. Amend, Kenneth J. Pienta
Format: Article
Language:English
Published: The Royal Society 2023-08-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/10.1098/rsos.230338
Description
Summary:The evolution of antibiotic resistance is a fundamental problem in disease management but is rarely quantified on a single-cell level owing to challenges associated with capturing the spatial and temporal variation across a population. To evaluate cell biological phenotypic responses, we tracked the single-cell dynamics of filamentous bacteria through time in response to ciprofloxacin antibiotic stress. We measured the degree of phenotypic variation in nucleoid length and the accumulation of protein damage under ciprofloxacin antibiotic and quantified the impact on bacterial survival. Increased survival was correlated with increased nucleoid length and the variation in this response was inversely correlated with antibiotic concentration. Survival time was also increased through clearance of misfolded proteins, an unexpected mechanism of stress relief deployed by the filamentous bacteria. Our results reveal a diverse range of survival tactics employed by bacteria in response to ciprofloxacin and suggest potential evolutionary routes to resistance.
ISSN:2054-5703