Summary: | A total dominating set of a graph $G=(V,E)$ is a subset $D \subseteq V$ such
that every vertex in $V$ is adjacent to some vertex in $D$. Finding a total
dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on
general graphs when parameterized by the solution size. By the meta-theorem of
Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for Total
Dominating Set on graphs of bounded genus. Nevertheless, it is not clear how
such a kernel can be effectively constructed, and how to obtain explicit
reduction rules with reasonably small constants. Following the approach of
Alber et al. [J. ACM, 2004], we provide an explicit kernel for Total Dominating
Set on planar graphs with at most $410k$ vertices, where $k$ is the size of the
solution. This result complements several known constructive linear kernels on
planar graphs for other domination problems such as Dominating Set, Edge
Dominating Set, Efficient Dominating Set, Connected Dominating Set, or Red-Blue
Dominating Set.
|