On the Growth of Solutions of Some Second-Order Linear Differential Equations
<p/> <p>We investigate the growth of solutions of <inline-formula> <graphic file="1029-242X-2011-635604-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2011-635604-i2.gif"/></inline-formula> and <inlin...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2011-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2011/635604 |
_version_ | 1819209559369056256 |
---|---|
author | Peng Feng Chen Zong-Xuan |
author_facet | Peng Feng Chen Zong-Xuan |
author_sort | Peng Feng |
collection | DOAJ |
description | <p/> <p>We investigate the growth of solutions of <inline-formula> <graphic file="1029-242X-2011-635604-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2011-635604-i2.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-635604-i3.gif"/></inline-formula> are entire functions. When <inline-formula> <graphic file="1029-242X-2011-635604-i4.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-635604-i5.gif"/></inline-formula> satisfy some conditions, we prove that every nonzero solution of the above equation has infinite order and hyper-order 1, which improve the previous results.</p> |
first_indexed | 2024-12-23T05:57:12Z |
format | Article |
id | doaj.art-912c5f1005294fbbbd7958300ce4aeee |
institution | Directory Open Access Journal |
issn | 1025-5834 1029-242X |
language | English |
last_indexed | 2024-12-23T05:57:12Z |
publishDate | 2011-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of Inequalities and Applications |
spelling | doaj.art-912c5f1005294fbbbd7958300ce4aeee2022-12-21T17:57:46ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2011-01-0120111635604On the Growth of Solutions of Some Second-Order Linear Differential EquationsPeng FengChen Zong-Xuan<p/> <p>We investigate the growth of solutions of <inline-formula> <graphic file="1029-242X-2011-635604-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2011-635604-i2.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-635604-i3.gif"/></inline-formula> are entire functions. When <inline-formula> <graphic file="1029-242X-2011-635604-i4.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-635604-i5.gif"/></inline-formula> satisfy some conditions, we prove that every nonzero solution of the above equation has infinite order and hyper-order 1, which improve the previous results.</p>http://www.journalofinequalitiesandapplications.com/content/2011/635604 |
spellingShingle | Peng Feng Chen Zong-Xuan On the Growth of Solutions of Some Second-Order Linear Differential Equations Journal of Inequalities and Applications |
title | On the Growth of Solutions of Some Second-Order Linear Differential Equations |
title_full | On the Growth of Solutions of Some Second-Order Linear Differential Equations |
title_fullStr | On the Growth of Solutions of Some Second-Order Linear Differential Equations |
title_full_unstemmed | On the Growth of Solutions of Some Second-Order Linear Differential Equations |
title_short | On the Growth of Solutions of Some Second-Order Linear Differential Equations |
title_sort | on the growth of solutions of some second order linear differential equations |
url | http://www.journalofinequalitiesandapplications.com/content/2011/635604 |
work_keys_str_mv | AT pengfeng onthegrowthofsolutionsofsomesecondorderlineardifferentialequations AT chenzongxuan onthegrowthofsolutionsofsomesecondorderlineardifferentialequations |