On the Growth of Solutions of Some Second-Order Linear Differential Equations

<p/> <p>We investigate the growth of solutions of <inline-formula> <graphic file="1029-242X-2011-635604-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2011-635604-i2.gif"/></inline-formula> and <inlin...

Full description

Bibliographic Details
Main Authors: Peng Feng, Chen Zong-Xuan
Format: Article
Language:English
Published: SpringerOpen 2011-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2011/635604
_version_ 1819209559369056256
author Peng Feng
Chen Zong-Xuan
author_facet Peng Feng
Chen Zong-Xuan
author_sort Peng Feng
collection DOAJ
description <p/> <p>We investigate the growth of solutions of <inline-formula> <graphic file="1029-242X-2011-635604-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2011-635604-i2.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-635604-i3.gif"/></inline-formula> are entire functions. When <inline-formula> <graphic file="1029-242X-2011-635604-i4.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-635604-i5.gif"/></inline-formula> satisfy some conditions, we prove that every nonzero solution of the above equation has infinite order and hyper-order 1, which improve the previous results.</p>
first_indexed 2024-12-23T05:57:12Z
format Article
id doaj.art-912c5f1005294fbbbd7958300ce4aeee
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-23T05:57:12Z
publishDate 2011-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-912c5f1005294fbbbd7958300ce4aeee2022-12-21T17:57:46ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2011-01-0120111635604On the Growth of Solutions of Some Second-Order Linear Differential EquationsPeng FengChen Zong-Xuan<p/> <p>We investigate the growth of solutions of <inline-formula> <graphic file="1029-242X-2011-635604-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2011-635604-i2.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-635604-i3.gif"/></inline-formula> are entire functions. When <inline-formula> <graphic file="1029-242X-2011-635604-i4.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2011-635604-i5.gif"/></inline-formula> satisfy some conditions, we prove that every nonzero solution of the above equation has infinite order and hyper-order 1, which improve the previous results.</p>http://www.journalofinequalitiesandapplications.com/content/2011/635604
spellingShingle Peng Feng
Chen Zong-Xuan
On the Growth of Solutions of Some Second-Order Linear Differential Equations
Journal of Inequalities and Applications
title On the Growth of Solutions of Some Second-Order Linear Differential Equations
title_full On the Growth of Solutions of Some Second-Order Linear Differential Equations
title_fullStr On the Growth of Solutions of Some Second-Order Linear Differential Equations
title_full_unstemmed On the Growth of Solutions of Some Second-Order Linear Differential Equations
title_short On the Growth of Solutions of Some Second-Order Linear Differential Equations
title_sort on the growth of solutions of some second order linear differential equations
url http://www.journalofinequalitiesandapplications.com/content/2011/635604
work_keys_str_mv AT pengfeng onthegrowthofsolutionsofsomesecondorderlineardifferentialequations
AT chenzongxuan onthegrowthofsolutionsofsomesecondorderlineardifferentialequations