Summary: | The investigation of droplet and nanoparticle formation in spray flame synthesis requires sophisticated measurement techniques, as often both are present simultaneously. Here, wide-angle light scattering (WALS) was applied to determine droplet and nanoparticle size distributions in spray flames from a standardized liquid-fed burner setup. Solvents of pure ethanol and a mixture of ethanol and titanium isopropoxide, incepting nanoparticle synthesis, were investigated. A novel method for the evaluation of scattering data from droplets between 2 µm and 50 µm was successfully implemented. Applying this, we could reveal the development of a bimodal droplet size distribution for the solvent/precursor system, probably induced by droplet micro-explosions. To determine nanoparticle size distributions, an appropriate filter and the averaging of single-shot data were applied to ensure scattering from a significant amount of nanoparticles homogeneously distributed in the measurement volume. From the multivariate analysis of the scattering data, the presence of spherical particles and fractal aggregates was derived, which was confirmed by analysis of transmission electron microscopy images. Monte Carlo simulations allowed determining the distribution parameters for both morphological fractions in three heights above the burner. The results showed relatively wide size distributions, especially for the spherical fraction, and indicated an ongoing sintering, from fractal to spherical particles.
|