Boriding of Laser-Clad Inconel 718 Coatings for Enhanced Wear Resistance

Nickel-based superalloys are particularly suitable for applications under corrosive conditions. Economic advantages can be achieved by limiting the use of materials to the surface region. Furthermore, the tribological property profile can be significantly improved by surface hardening. In the presen...

Full description

Bibliographic Details
Main Authors: Thomas Lindner, Ali Günen, Gerd Töberling, Sabrina Vogt, Mustafa Serdar Karakas, Martin Löbel, Thomas Lampke
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/24/11935
Description
Summary:Nickel-based superalloys are particularly suitable for applications under corrosive conditions. Economic advantages can be achieved by limiting the use of materials to the surface region. Furthermore, the tribological property profile can be significantly improved by surface hardening. In the present study, the possibility of a process combination comprising a coating and a surface hardening technology was investigated. For this purpose, Inconel 718 coatings were applied to austenitic stainless steel by laser cladding. Subsequently, a thermochemical surface hardening by boriding was carried out. Scanning electron microscopic (SEM) examinations were performed to evaluate the microstructure. The phase composition was determined by means of X-ray diffraction (XRD) for the different states of the coating system. The influence of thermochemical hardening was investigated for different wear conditions. The increase in microhardness and wear resistance clearly demonstrates the utilization potential of the presented process combination.
ISSN:2076-3417