Deep learning interpretation of echocardiograms

Abstract Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learn...

Full description

Bibliographic Details
Main Authors: Amirata Ghorbani, David Ouyang, Abubakar Abid, Bryan He, Jonathan H. Chen, Robert A. Harrington, David H. Liang, Euan A. Ashley, James Y. Zou
Format: Article
Language:English
Published: Nature Portfolio 2020-01-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-019-0216-8
_version_ 1797429026464202752
author Amirata Ghorbani
David Ouyang
Abubakar Abid
Bryan He
Jonathan H. Chen
Robert A. Harrington
David H. Liang
Euan A. Ashley
James Y. Zou
author_facet Amirata Ghorbani
David Ouyang
Abubakar Abid
Bryan He
Jonathan H. Chen
Robert A. Harrington
David H. Liang
Euan A. Ashley
James Y. Zou
author_sort Amirata Ghorbani
collection DOAJ
description Abstract Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( $${R}^{2}$$ R 2  = 0.74 and $${R}^{2}$$ R 2  = 0.70), and ejection fraction ( $${R}^{2}$$ R 2  = 0.50), as well as predicted systemic phenotypes of age ( $${R}^{2}$$ R 2  = 0.46), sex (AUC = 0.88), weight ( $${R}^{2}$$ R 2  = 0.56), and height ( $${R}^{2}$$ R 2  = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
first_indexed 2024-03-09T09:07:15Z
format Article
id doaj.art-914a9b08ef9d49d596f7dc8d8a6c2fa6
institution Directory Open Access Journal
issn 2398-6352
language English
last_indexed 2024-03-09T09:07:15Z
publishDate 2020-01-01
publisher Nature Portfolio
record_format Article
series npj Digital Medicine
spelling doaj.art-914a9b08ef9d49d596f7dc8d8a6c2fa62023-12-02T10:10:18ZengNature Portfolionpj Digital Medicine2398-63522020-01-013111010.1038/s41746-019-0216-8Deep learning interpretation of echocardiogramsAmirata Ghorbani0David Ouyang1Abubakar Abid2Bryan He3Jonathan H. Chen4Robert A. Harrington5David H. Liang6Euan A. Ashley7James Y. Zou8Department of Electrical Engineering, Stanford UniversityDepartment of Medicine, Stanford UniversityDepartment of Electrical Engineering, Stanford UniversityDepartment of Computer Science, Stanford UniversityDepartment of Medicine, Stanford UniversityDepartment of Medicine, Stanford UniversityDepartment of Medicine, Stanford UniversityDepartment of Medicine, Stanford UniversityDepartment of Electrical Engineering, Stanford UniversityAbstract Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( $${R}^{2}$$ R 2  = 0.74 and $${R}^{2}$$ R 2  = 0.70), and ejection fraction ( $${R}^{2}$$ R 2  = 0.50), as well as predicted systemic phenotypes of age ( $${R}^{2}$$ R 2  = 0.46), sex (AUC = 0.88), weight ( $${R}^{2}$$ R 2  = 0.56), and height ( $${R}^{2}$$ R 2  = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.https://doi.org/10.1038/s41746-019-0216-8
spellingShingle Amirata Ghorbani
David Ouyang
Abubakar Abid
Bryan He
Jonathan H. Chen
Robert A. Harrington
David H. Liang
Euan A. Ashley
James Y. Zou
Deep learning interpretation of echocardiograms
npj Digital Medicine
title Deep learning interpretation of echocardiograms
title_full Deep learning interpretation of echocardiograms
title_fullStr Deep learning interpretation of echocardiograms
title_full_unstemmed Deep learning interpretation of echocardiograms
title_short Deep learning interpretation of echocardiograms
title_sort deep learning interpretation of echocardiograms
url https://doi.org/10.1038/s41746-019-0216-8
work_keys_str_mv AT amirataghorbani deeplearninginterpretationofechocardiograms
AT davidouyang deeplearninginterpretationofechocardiograms
AT abubakarabid deeplearninginterpretationofechocardiograms
AT bryanhe deeplearninginterpretationofechocardiograms
AT jonathanhchen deeplearninginterpretationofechocardiograms
AT robertaharrington deeplearninginterpretationofechocardiograms
AT davidhliang deeplearninginterpretationofechocardiograms
AT euanaashley deeplearninginterpretationofechocardiograms
AT jamesyzou deeplearninginterpretationofechocardiograms