On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$

In this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$.

Bibliographic Details
Main Authors: Burak Oğul, Dağistan Şimşek
Format: Article
Language:English
Published: Emrah Evren KARA 2021-03-01
Series:Communications in Advanced Mathematical Sciences
Subjects:
Online Access:https://dergipark.org.tr/tr/download/article-file/1356905
_version_ 1797294218485432320
author Burak Oğul
Dağistan Şimşek
author_facet Burak Oğul
Dağistan Şimşek
author_sort Burak Oğul
collection DOAJ
description In this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$.
first_indexed 2024-03-07T21:27:03Z
format Article
id doaj.art-914f7e0f0e564c188167590a7cdfcf4d
institution Directory Open Access Journal
issn 2651-4001
language English
last_indexed 2024-03-07T21:27:03Z
publishDate 2021-03-01
publisher Emrah Evren KARA
record_format Article
series Communications in Advanced Mathematical Sciences
spelling doaj.art-914f7e0f0e564c188167590a7cdfcf4d2024-02-27T04:36:36ZengEmrah Evren KARACommunications in Advanced Mathematical Sciences2651-40012021-03-0141465410.33434/cams.8142961225On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$Burak Oğul0Dağistan Şimşek1KYRGYZ - TURKISH MANAS UNIVERSITY, INSTITUTE OF SCIENCEKONYA TEKNİK UNİVERSİTESIİIn this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$.https://dergipark.org.tr/tr/download/article-file/1356905difference equationrecursive sequenceperiod 30 solutions
spellingShingle Burak Oğul
Dağistan Şimşek
On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$
Communications in Advanced Mathematical Sciences
difference equation
recursive sequence
period 30 solutions
title On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$
title_full On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$
title_fullStr On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$
title_full_unstemmed On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$
title_short On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$
title_sort on the recursive sequence x n 1 frac x n 29 1 x n 4 x n 9 x n 14 x n 19 x n 24
topic difference equation
recursive sequence
period 30 solutions
url https://dergipark.org.tr/tr/download/article-file/1356905
work_keys_str_mv AT burakogul ontherecursivesequencexn1fracxn291xn4xn9xn14xn19xn24
AT dagistansimsek ontherecursivesequencexn1fracxn291xn4xn9xn14xn19xn24