On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$
In this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Emrah Evren KARA
2021-03-01
|
Series: | Communications in Advanced Mathematical Sciences |
Subjects: | |
Online Access: | https://dergipark.org.tr/tr/download/article-file/1356905 |
_version_ | 1797294218485432320 |
---|---|
author | Burak Oğul Dağistan Şimşek |
author_facet | Burak Oğul Dağistan Şimşek |
author_sort | Burak Oğul |
collection | DOAJ |
description | In this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$. |
first_indexed | 2024-03-07T21:27:03Z |
format | Article |
id | doaj.art-914f7e0f0e564c188167590a7cdfcf4d |
institution | Directory Open Access Journal |
issn | 2651-4001 |
language | English |
last_indexed | 2024-03-07T21:27:03Z |
publishDate | 2021-03-01 |
publisher | Emrah Evren KARA |
record_format | Article |
series | Communications in Advanced Mathematical Sciences |
spelling | doaj.art-914f7e0f0e564c188167590a7cdfcf4d2024-02-27T04:36:36ZengEmrah Evren KARACommunications in Advanced Mathematical Sciences2651-40012021-03-0141465410.33434/cams.8142961225On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$Burak Oğul0Dağistan Şimşek1KYRGYZ - TURKISH MANAS UNIVERSITY, INSTITUTE OF SCIENCEKONYA TEKNİK UNİVERSİTESIİIn this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$.https://dergipark.org.tr/tr/download/article-file/1356905difference equationrecursive sequenceperiod 30 solutions |
spellingShingle | Burak Oğul Dağistan Şimşek On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$ Communications in Advanced Mathematical Sciences difference equation recursive sequence period 30 solutions |
title | On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$ |
title_full | On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$ |
title_fullStr | On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$ |
title_full_unstemmed | On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$ |
title_short | On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$ |
title_sort | on the recursive sequence x n 1 frac x n 29 1 x n 4 x n 9 x n 14 x n 19 x n 24 |
topic | difference equation recursive sequence period 30 solutions |
url | https://dergipark.org.tr/tr/download/article-file/1356905 |
work_keys_str_mv | AT burakogul ontherecursivesequencexn1fracxn291xn4xn9xn14xn19xn24 AT dagistansimsek ontherecursivesequencexn1fracxn291xn4xn9xn14xn19xn24 |