Design and Optimization of the Internal Geometry of a Nozzle for a Thin-Slab Continuous Casting Mold

Understanding the phenomena that cause jet oscillations inside funnel-type thin-slab molds is essential for ensuring continuous liquid steel delivery, improving flow pattern control, and increasing plant productivity and the quality of the final product. This research aims to study the effect of the...

Full description

Bibliographic Details
Main Authors: Fernando S. Chiwo, Ana del Carmen Susunaga-Notario, José Antonio Betancourt-Cantera, Raúl Pérez-Bustamante, Víctor Hugo Mercado-Lemus, Javier Méndez-Lozoya, Gerardo Barrera-Cardiel, John Edison García-Herrera, Hugo Arcos-Gutiérrez, Isaías E. Garduño
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Designs
Subjects:
Online Access:https://www.mdpi.com/2411-9660/8/1/2
_version_ 1797298492103720960
author Fernando S. Chiwo
Ana del Carmen Susunaga-Notario
José Antonio Betancourt-Cantera
Raúl Pérez-Bustamante
Víctor Hugo Mercado-Lemus
Javier Méndez-Lozoya
Gerardo Barrera-Cardiel
John Edison García-Herrera
Hugo Arcos-Gutiérrez
Isaías E. Garduño
author_facet Fernando S. Chiwo
Ana del Carmen Susunaga-Notario
José Antonio Betancourt-Cantera
Raúl Pérez-Bustamante
Víctor Hugo Mercado-Lemus
Javier Méndez-Lozoya
Gerardo Barrera-Cardiel
John Edison García-Herrera
Hugo Arcos-Gutiérrez
Isaías E. Garduño
author_sort Fernando S. Chiwo
collection DOAJ
description Understanding the phenomena that cause jet oscillations inside funnel-type thin-slab molds is essential for ensuring continuous liquid steel delivery, improving flow pattern control, and increasing plant productivity and the quality of the final product. This research aims to study the effect of the nozzle’s internal design on the fluid dynamics of the nozzle-mold system, focusing on suppressing vorticity generation below the nozzle’s tip. The optimized design of the nozzle forms the basis of the results obtained through numerical simulation. Mathematical modeling involves fundamental equations, the Reynolds Stress Model for turbulence, and the Multiphase Volume of Fluid model. The governing equations are discretized and solved using the implicit iterative-segregated method implemented in FLUENT<sup>®</sup>. The main results demonstrate the possibility of controlling jet oscillations even at high casting speeds and deep dives. The proposed modification in the internal geometry of the nozzle is considered capable of modifying the flow pattern inside the mold. The geometric changes correspond with 106% more elongation than the original nozzle; the change is considered 17% of an inverted trapezoidal shape. Furthermore, there was a 2.5 mm increase in the lower part of both ports to compensate for the inverted trapezoidal shape. The newly designed SEN successfully eliminated the issue of jet oscillations inside the mold by effectively preventing the intertwining of the flow. This improvement is a significant upgrade over the original design. At the microscale, a delicate force balance occurs at the tip of the nozzle’s internal bifurcation, which is influenced by fluctuating speeds and ferrostatic pressure. Disrupting this force balance leads to increased oscillations, causing variations in the mass flow rate from one port to another. Consequently, the proposed nozzle optimization design effectively controls microscale fluctuations above this zone in conjunction with changes in flow speed, jet oscillation, and metal–slag interface instability.
first_indexed 2024-03-07T22:35:38Z
format Article
id doaj.art-915590f548314b568e12cf57b1e33fc5
institution Directory Open Access Journal
issn 2411-9660
language English
last_indexed 2024-03-07T22:35:38Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Designs
spelling doaj.art-915590f548314b568e12cf57b1e33fc52024-02-23T15:13:36ZengMDPI AGDesigns2411-96602023-12-0181210.3390/designs8010002Design and Optimization of the Internal Geometry of a Nozzle for a Thin-Slab Continuous Casting MoldFernando S. Chiwo0Ana del Carmen Susunaga-Notario1José Antonio Betancourt-Cantera2Raúl Pérez-Bustamante3Víctor Hugo Mercado-Lemus4Javier Méndez-Lozoya5Gerardo Barrera-Cardiel6John Edison García-Herrera7Hugo Arcos-Gutiérrez8Isaías E. Garduño9CIATEQ A.C., Eje 126 No. 225, Zona Industrial del Potosí, San Luis Potosí 78395, MexicoCONAHCYT—ICAT Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Col. UNAM, C.U., Delegación Coyoacán, Ciudad de Mexico 04510, MexicoCONAHCYT—Corporación Mexicana de Investigación en Materiales (COMIMSA), Ciencia y Tecnología No. 790, Fraccionamiento Saltillo 400, Saltillo 25290, MexicoCONAHCYT—Corporación Mexicana de Investigación en Materiales (COMIMSA), Ciencia y Tecnología No. 790, Fraccionamiento Saltillo 400, Saltillo 25290, MexicoCONAHCYT—Corporación Mexicana de Investigación en Materiales (COMIMSA), Ciencia y Tecnología No. 790, Fraccionamiento Saltillo 400, Saltillo 25290, MexicoInstituto Tecnológico de San Luis Potosí, Tecnológico S/N, Col. Unidad, Ponciano Arriaga, Soledad de Graciano Sánchez 78436, MexicoInstituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, MexicoCONAHCYT—CIATEQ A.C., Eje 126 No. 225, Zona Industrial del Potosí, San Luis Potosí 78395, MexicoCONAHCYT—CIATEQ A.C., Eje 126 No. 225, Zona Industrial del Potosí, San Luis Potosí 78395, MexicoCONAHCYT—CIATEQ A.C., Eje 126 No. 225, Zona Industrial del Potosí, San Luis Potosí 78395, MexicoUnderstanding the phenomena that cause jet oscillations inside funnel-type thin-slab molds is essential for ensuring continuous liquid steel delivery, improving flow pattern control, and increasing plant productivity and the quality of the final product. This research aims to study the effect of the nozzle’s internal design on the fluid dynamics of the nozzle-mold system, focusing on suppressing vorticity generation below the nozzle’s tip. The optimized design of the nozzle forms the basis of the results obtained through numerical simulation. Mathematical modeling involves fundamental equations, the Reynolds Stress Model for turbulence, and the Multiphase Volume of Fluid model. The governing equations are discretized and solved using the implicit iterative-segregated method implemented in FLUENT<sup>®</sup>. The main results demonstrate the possibility of controlling jet oscillations even at high casting speeds and deep dives. The proposed modification in the internal geometry of the nozzle is considered capable of modifying the flow pattern inside the mold. The geometric changes correspond with 106% more elongation than the original nozzle; the change is considered 17% of an inverted trapezoidal shape. Furthermore, there was a 2.5 mm increase in the lower part of both ports to compensate for the inverted trapezoidal shape. The newly designed SEN successfully eliminated the issue of jet oscillations inside the mold by effectively preventing the intertwining of the flow. This improvement is a significant upgrade over the original design. At the microscale, a delicate force balance occurs at the tip of the nozzle’s internal bifurcation, which is influenced by fluctuating speeds and ferrostatic pressure. Disrupting this force balance leads to increased oscillations, causing variations in the mass flow rate from one port to another. Consequently, the proposed nozzle optimization design effectively controls microscale fluctuations above this zone in conjunction with changes in flow speed, jet oscillation, and metal–slag interface instability.https://www.mdpi.com/2411-9660/8/1/2thin-slab moldjet oscillationsnozzle optimizationnumerical simulation
spellingShingle Fernando S. Chiwo
Ana del Carmen Susunaga-Notario
José Antonio Betancourt-Cantera
Raúl Pérez-Bustamante
Víctor Hugo Mercado-Lemus
Javier Méndez-Lozoya
Gerardo Barrera-Cardiel
John Edison García-Herrera
Hugo Arcos-Gutiérrez
Isaías E. Garduño
Design and Optimization of the Internal Geometry of a Nozzle for a Thin-Slab Continuous Casting Mold
Designs
thin-slab mold
jet oscillations
nozzle optimization
numerical simulation
title Design and Optimization of the Internal Geometry of a Nozzle for a Thin-Slab Continuous Casting Mold
title_full Design and Optimization of the Internal Geometry of a Nozzle for a Thin-Slab Continuous Casting Mold
title_fullStr Design and Optimization of the Internal Geometry of a Nozzle for a Thin-Slab Continuous Casting Mold
title_full_unstemmed Design and Optimization of the Internal Geometry of a Nozzle for a Thin-Slab Continuous Casting Mold
title_short Design and Optimization of the Internal Geometry of a Nozzle for a Thin-Slab Continuous Casting Mold
title_sort design and optimization of the internal geometry of a nozzle for a thin slab continuous casting mold
topic thin-slab mold
jet oscillations
nozzle optimization
numerical simulation
url https://www.mdpi.com/2411-9660/8/1/2
work_keys_str_mv AT fernandoschiwo designandoptimizationoftheinternalgeometryofanozzleforathinslabcontinuouscastingmold
AT anadelcarmensusunaganotario designandoptimizationoftheinternalgeometryofanozzleforathinslabcontinuouscastingmold
AT joseantoniobetancourtcantera designandoptimizationoftheinternalgeometryofanozzleforathinslabcontinuouscastingmold
AT raulperezbustamante designandoptimizationoftheinternalgeometryofanozzleforathinslabcontinuouscastingmold
AT victorhugomercadolemus designandoptimizationoftheinternalgeometryofanozzleforathinslabcontinuouscastingmold
AT javiermendezlozoya designandoptimizationoftheinternalgeometryofanozzleforathinslabcontinuouscastingmold
AT gerardobarreracardiel designandoptimizationoftheinternalgeometryofanozzleforathinslabcontinuouscastingmold
AT johnedisongarciaherrera designandoptimizationoftheinternalgeometryofanozzleforathinslabcontinuouscastingmold
AT hugoarcosgutierrez designandoptimizationoftheinternalgeometryofanozzleforathinslabcontinuouscastingmold
AT isaiasegarduno designandoptimizationoftheinternalgeometryofanozzleforathinslabcontinuouscastingmold