Laminar signal extraction over extended cortical areas by means of a spatial GLM.

There is converging evidence that distinct neuronal processes leave distinguishable footprints in the laminar BOLD response. However, even though the achievable spatial resolution in functional MRI has much improved over the years, it is still challenging to separate signals arising from different c...

Full description

Bibliographic Details
Main Authors: Tim van Mourik, Jan P J M van der Eerden, Pierre-Louis Bazin, David G Norris
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0212493
_version_ 1818588214087122944
author Tim van Mourik
Jan P J M van der Eerden
Pierre-Louis Bazin
David G Norris
author_facet Tim van Mourik
Jan P J M van der Eerden
Pierre-Louis Bazin
David G Norris
author_sort Tim van Mourik
collection DOAJ
description There is converging evidence that distinct neuronal processes leave distinguishable footprints in the laminar BOLD response. However, even though the achievable spatial resolution in functional MRI has much improved over the years, it is still challenging to separate signals arising from different cortical layers. In this work, we propose a new method to extract laminar signals. We use a spatial General Linear Model in combination with the equivolume principle of cortical layers to unmix laminar signals instead of interpolating through and integrating over a cortical area: thus reducing partial volume effects. Not only do we provide a mathematical framework for extracting laminar signals with a spatial GLM, we also illustrate that the best case scenarios of existing methods can be seen as special cases within the same framework. By means of simulation, we show that this approach has a sharper point spread function, providing better signal localisation. We further assess the partial volume contamination in cortical profiles from high resolution human ex vivo and in vivo structural data, and provide a full account of the benefits and potential caveats. We eschew here any attempt to validate the spatial GLM on the basis of fMRI data as a generally accepted ground-truth pattern of laminar activation does not currently exist. This approach is flexible in terms of the number of layers and their respective thickness, and naturally integrates spatial regularisation along the cortex, while preserving laminar specificity. Care must be taken, however, as this procedure of unmixing is susceptible to sources of noise in the data or inaccuracies in the laminar segmentation.
first_indexed 2024-12-16T09:21:11Z
format Article
id doaj.art-91581a030cfc40089f00da48d6ad695b
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-16T09:21:11Z
publishDate 2019-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-91581a030cfc40089f00da48d6ad695b2022-12-21T22:36:47ZengPublic Library of Science (PLoS)PLoS ONE1932-62032019-01-01143e021249310.1371/journal.pone.0212493Laminar signal extraction over extended cortical areas by means of a spatial GLM.Tim van MourikJan P J M van der EerdenPierre-Louis BazinDavid G NorrisThere is converging evidence that distinct neuronal processes leave distinguishable footprints in the laminar BOLD response. However, even though the achievable spatial resolution in functional MRI has much improved over the years, it is still challenging to separate signals arising from different cortical layers. In this work, we propose a new method to extract laminar signals. We use a spatial General Linear Model in combination with the equivolume principle of cortical layers to unmix laminar signals instead of interpolating through and integrating over a cortical area: thus reducing partial volume effects. Not only do we provide a mathematical framework for extracting laminar signals with a spatial GLM, we also illustrate that the best case scenarios of existing methods can be seen as special cases within the same framework. By means of simulation, we show that this approach has a sharper point spread function, providing better signal localisation. We further assess the partial volume contamination in cortical profiles from high resolution human ex vivo and in vivo structural data, and provide a full account of the benefits and potential caveats. We eschew here any attempt to validate the spatial GLM on the basis of fMRI data as a generally accepted ground-truth pattern of laminar activation does not currently exist. This approach is flexible in terms of the number of layers and their respective thickness, and naturally integrates spatial regularisation along the cortex, while preserving laminar specificity. Care must be taken, however, as this procedure of unmixing is susceptible to sources of noise in the data or inaccuracies in the laminar segmentation.https://doi.org/10.1371/journal.pone.0212493
spellingShingle Tim van Mourik
Jan P J M van der Eerden
Pierre-Louis Bazin
David G Norris
Laminar signal extraction over extended cortical areas by means of a spatial GLM.
PLoS ONE
title Laminar signal extraction over extended cortical areas by means of a spatial GLM.
title_full Laminar signal extraction over extended cortical areas by means of a spatial GLM.
title_fullStr Laminar signal extraction over extended cortical areas by means of a spatial GLM.
title_full_unstemmed Laminar signal extraction over extended cortical areas by means of a spatial GLM.
title_short Laminar signal extraction over extended cortical areas by means of a spatial GLM.
title_sort laminar signal extraction over extended cortical areas by means of a spatial glm
url https://doi.org/10.1371/journal.pone.0212493
work_keys_str_mv AT timvanmourik laminarsignalextractionoverextendedcorticalareasbymeansofaspatialglm
AT janpjmvandereerden laminarsignalextractionoverextendedcorticalareasbymeansofaspatialglm
AT pierrelouisbazin laminarsignalextractionoverextendedcorticalareasbymeansofaspatialglm
AT davidgnorris laminarsignalextractionoverextendedcorticalareasbymeansofaspatialglm