Second Law Analysis for the Experimental Performances of a Cold Heat Exchanger of a Stirling Refrigeration Machine

The second law of thermodynamics is applied to evaluate the influence of entropy generation on the performances of a cold heat exchanger of an experimental Stirling refrigeration machine by means of three factors: the entropy generation rate <inline-formula> <math display="inline"...

Full description

Bibliographic Details
Main Authors: Steve Djetel-Gothe, François Lanzetta, Sylvie Bégot
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/2/215
_version_ 1817995435744165888
author Steve Djetel-Gothe
François Lanzetta
Sylvie Bégot
author_facet Steve Djetel-Gothe
François Lanzetta
Sylvie Bégot
author_sort Steve Djetel-Gothe
collection DOAJ
description The second law of thermodynamics is applied to evaluate the influence of entropy generation on the performances of a cold heat exchanger of an experimental Stirling refrigeration machine by means of three factors: the entropy generation rate <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>S</mi> </msub> </mrow> </semantics> </math> </inline-formula>, the irreversibility distribution ratio <i>ϕ</i> and the Bejan number <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mrow> <mrow> <mi>B</mi> <mi>e</mi> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <msub> <mi>N</mi> <mi>S</mi> </msub> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> based on a dimensionless entropy ratio that we introduced. These factors are investigated as functions of characteristic dimensions of the heat exchanger (hydraulic diameter and length), coolant mass flow and cold gas temperature. We have demonstrated the role of these factors on the thermal and fluid friction irreversibilities. The conclusions are derived from the behavior of the entropy generation factors concerning the heat transfer and fluid friction characteristics of a double-pipe type heat exchanger crossed by a coolant liquid (55/45 by mass ethylene glycol/water mixture) in the temperature range 240 K &lt; <i>T<sub>C</sub></i> &lt; 300 K. The mathematical model of entropy generation includes experimental measurements of pressures, temperatures and coolant mass flow, and the characteristic dimensions of the heat exchanger. A large characteristic length and small hydraulic diameter generate large entropy production, especially at a low mean temperature, because the high value of the coolant liquid viscosity increases the fluid frictions. The model and experiments showed the dominance of heat transfer over viscous friction in the cold heat exchanger and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mrow> <mrow> <mi>B</mi> <mi>e</mi> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <msub> <mi>N</mi> <mi>S</mi> </msub> </mrow> </msub> <mo>&#8594;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and <i>ϕ</i> &#8594; 0 for mass flow rates <inline-formula> <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>m</mi> <mo>˙</mo> </mover> <mo>&#8594;</mo> <mn>0.1</mn> </mrow> </semantics> </math> </inline-formula> kg.s<sup>&#8722;1</sup>.
first_indexed 2024-04-14T02:07:04Z
format Article
id doaj.art-915f3c4965364a5191a2e2f484d10e32
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-14T02:07:04Z
publishDate 2020-02-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-915f3c4965364a5191a2e2f484d10e322022-12-22T02:18:39ZengMDPI AGEntropy1099-43002020-02-0122221510.3390/e22020215e22020215Second Law Analysis for the Experimental Performances of a Cold Heat Exchanger of a Stirling Refrigeration MachineSteve Djetel-Gothe0François Lanzetta1Sylvie Bégot2FEMTO-ST, Energy Department, Univ. Bourgogne Franche-Comté, CNRS Parc technologique, 2 avenue Jean Moulin, 90000 Belfort, FranceFEMTO-ST, Energy Department, Univ. Bourgogne Franche-Comté, CNRS Parc technologique, 2 avenue Jean Moulin, 90000 Belfort, FranceFEMTO-ST, Energy Department, Univ. Bourgogne Franche-Comté, CNRS Parc technologique, 2 avenue Jean Moulin, 90000 Belfort, FranceThe second law of thermodynamics is applied to evaluate the influence of entropy generation on the performances of a cold heat exchanger of an experimental Stirling refrigeration machine by means of three factors: the entropy generation rate <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>S</mi> </msub> </mrow> </semantics> </math> </inline-formula>, the irreversibility distribution ratio <i>ϕ</i> and the Bejan number <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mrow> <mrow> <mi>B</mi> <mi>e</mi> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <msub> <mi>N</mi> <mi>S</mi> </msub> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> based on a dimensionless entropy ratio that we introduced. These factors are investigated as functions of characteristic dimensions of the heat exchanger (hydraulic diameter and length), coolant mass flow and cold gas temperature. We have demonstrated the role of these factors on the thermal and fluid friction irreversibilities. The conclusions are derived from the behavior of the entropy generation factors concerning the heat transfer and fluid friction characteristics of a double-pipe type heat exchanger crossed by a coolant liquid (55/45 by mass ethylene glycol/water mixture) in the temperature range 240 K &lt; <i>T<sub>C</sub></i> &lt; 300 K. The mathematical model of entropy generation includes experimental measurements of pressures, temperatures and coolant mass flow, and the characteristic dimensions of the heat exchanger. A large characteristic length and small hydraulic diameter generate large entropy production, especially at a low mean temperature, because the high value of the coolant liquid viscosity increases the fluid frictions. The model and experiments showed the dominance of heat transfer over viscous friction in the cold heat exchanger and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mrow> <mrow> <mi>B</mi> <mi>e</mi> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <msub> <mi>N</mi> <mi>S</mi> </msub> </mrow> </msub> <mo>&#8594;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and <i>ϕ</i> &#8594; 0 for mass flow rates <inline-formula> <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>m</mi> <mo>˙</mo> </mover> <mo>&#8594;</mo> <mn>0.1</mn> </mrow> </semantics> </math> </inline-formula> kg.s<sup>&#8722;1</sup>.https://www.mdpi.com/1099-4300/22/2/215stirling cyclerefrigeratorheat exchangersecond lawentropy production
spellingShingle Steve Djetel-Gothe
François Lanzetta
Sylvie Bégot
Second Law Analysis for the Experimental Performances of a Cold Heat Exchanger of a Stirling Refrigeration Machine
Entropy
stirling cycle
refrigerator
heat exchanger
second law
entropy production
title Second Law Analysis for the Experimental Performances of a Cold Heat Exchanger of a Stirling Refrigeration Machine
title_full Second Law Analysis for the Experimental Performances of a Cold Heat Exchanger of a Stirling Refrigeration Machine
title_fullStr Second Law Analysis for the Experimental Performances of a Cold Heat Exchanger of a Stirling Refrigeration Machine
title_full_unstemmed Second Law Analysis for the Experimental Performances of a Cold Heat Exchanger of a Stirling Refrigeration Machine
title_short Second Law Analysis for the Experimental Performances of a Cold Heat Exchanger of a Stirling Refrigeration Machine
title_sort second law analysis for the experimental performances of a cold heat exchanger of a stirling refrigeration machine
topic stirling cycle
refrigerator
heat exchanger
second law
entropy production
url https://www.mdpi.com/1099-4300/22/2/215
work_keys_str_mv AT stevedjetelgothe secondlawanalysisfortheexperimentalperformancesofacoldheatexchangerofastirlingrefrigerationmachine
AT francoislanzetta secondlawanalysisfortheexperimentalperformancesofacoldheatexchangerofastirlingrefrigerationmachine
AT sylviebegot secondlawanalysisfortheexperimentalperformancesofacoldheatexchangerofastirlingrefrigerationmachine