The Caspase Homologues in Scallop <i>Chlamys farreri</i> and Their Expression Responses to Toxic Dinoflagellates Exposure
The cysteine aspartic acid-specific protease (caspase) family is distributed across vertebrates and invertebrates, and its members are involved in apoptosis and response to cellular stress. The Zhikong scallop (<i>Chlamys farreri</i>) is a bivalve mollusc that is well adapted to complex...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-01-01
|
Series: | Toxins |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-6651/14/2/108 |
_version_ | 1797476272241115136 |
---|---|
author | Zhongcheng Wei Wei Ding Moli Li Jiaoxia Shi Huizhen Wang Yangrui Wang Yubo Li Yiqiang Xu Jingjie Hu Zhenmin Bao Xiaoli Hu |
author_facet | Zhongcheng Wei Wei Ding Moli Li Jiaoxia Shi Huizhen Wang Yangrui Wang Yubo Li Yiqiang Xu Jingjie Hu Zhenmin Bao Xiaoli Hu |
author_sort | Zhongcheng Wei |
collection | DOAJ |
description | The cysteine aspartic acid-specific protease (caspase) family is distributed across vertebrates and invertebrates, and its members are involved in apoptosis and response to cellular stress. The Zhikong scallop (<i>Chlamys farreri</i>) is a bivalve mollusc that is well adapted to complex marine environments, yet the diversity of caspase homologues and their expression patterns in the Zhikong scallop remain largely unknown. Here, we identified 30 caspase homologues in the genome of the Zhikong scallop and analysed their expression dynamics during all developmental stages and following exposure to paralytic shellfish toxins (PSTs). The 30 caspase homologues were classified as initiators (caspases-2/9 and caspases-8/10) or executioners (caspases-3/6/7 and caspases-3/6/7-like) and displayed increased copy numbers compared to those in vertebrates. Almost all of the caspase-2/9 genes were highly expressed throughout all developmental stages from zygote to juvenile, and their expression in the digestive gland and kidney was slightly influenced by PSTs. The caspase-8/10 genes were highly expressed in the digestive gland and kidney, while PSTs inhibited their expression in these two organs. After exposure to different <i>Alexandrium</i> PST-producing algae (AM-1 and ACDH), the number of significantly up-regulated caspase homologues in the digestive gland increased with the toxicity level of PST derivatives, which might be due to the higher toxicity of GTXs produced by AM-1 compared to the N-sulphocarbamoyl analogues produced by ACDH. However, the effect of these two PST-producing algae strains on caspase expression in the kidney seemed to be stronger, possibly because the PST derivatives were transformed into highly toxic compounds in scallop kidney, and suggested an organ-dependent response to PSTs. These results indicate the dedicated control of caspase gene expression and highlight their contribution to PSTs in <i>C. farreri</i>. This work provides a further understanding of the role of caspase homologues in the Zhikong scallop and can guide future studies focussing on the role of caspases and their interactions with PSTs. |
first_indexed | 2024-03-09T20:55:37Z |
format | Article |
id | doaj.art-916a92992c6549fab2c2906c5b25d7d8 |
institution | Directory Open Access Journal |
issn | 2072-6651 |
language | English |
last_indexed | 2024-03-09T20:55:37Z |
publishDate | 2022-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Toxins |
spelling | doaj.art-916a92992c6549fab2c2906c5b25d7d82023-11-23T22:21:30ZengMDPI AGToxins2072-66512022-01-0114210810.3390/toxins14020108The Caspase Homologues in Scallop <i>Chlamys farreri</i> and Their Expression Responses to Toxic Dinoflagellates ExposureZhongcheng Wei0Wei Ding1Moli Li2Jiaoxia Shi3Huizhen Wang4Yangrui Wang5Yubo Li6Yiqiang Xu7Jingjie Hu8Zhenmin Bao9Xiaoli Hu10MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaMOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaThe cysteine aspartic acid-specific protease (caspase) family is distributed across vertebrates and invertebrates, and its members are involved in apoptosis and response to cellular stress. The Zhikong scallop (<i>Chlamys farreri</i>) is a bivalve mollusc that is well adapted to complex marine environments, yet the diversity of caspase homologues and their expression patterns in the Zhikong scallop remain largely unknown. Here, we identified 30 caspase homologues in the genome of the Zhikong scallop and analysed their expression dynamics during all developmental stages and following exposure to paralytic shellfish toxins (PSTs). The 30 caspase homologues were classified as initiators (caspases-2/9 and caspases-8/10) or executioners (caspases-3/6/7 and caspases-3/6/7-like) and displayed increased copy numbers compared to those in vertebrates. Almost all of the caspase-2/9 genes were highly expressed throughout all developmental stages from zygote to juvenile, and their expression in the digestive gland and kidney was slightly influenced by PSTs. The caspase-8/10 genes were highly expressed in the digestive gland and kidney, while PSTs inhibited their expression in these two organs. After exposure to different <i>Alexandrium</i> PST-producing algae (AM-1 and ACDH), the number of significantly up-regulated caspase homologues in the digestive gland increased with the toxicity level of PST derivatives, which might be due to the higher toxicity of GTXs produced by AM-1 compared to the N-sulphocarbamoyl analogues produced by ACDH. However, the effect of these two PST-producing algae strains on caspase expression in the kidney seemed to be stronger, possibly because the PST derivatives were transformed into highly toxic compounds in scallop kidney, and suggested an organ-dependent response to PSTs. These results indicate the dedicated control of caspase gene expression and highlight their contribution to PSTs in <i>C. farreri</i>. This work provides a further understanding of the role of caspase homologues in the Zhikong scallop and can guide future studies focussing on the role of caspases and their interactions with PSTs.https://www.mdpi.com/2072-6651/14/2/108caspasedevelopmentparalytic shellfish toxinZhikong scallop<i>Chlamys farreri</i> |
spellingShingle | Zhongcheng Wei Wei Ding Moli Li Jiaoxia Shi Huizhen Wang Yangrui Wang Yubo Li Yiqiang Xu Jingjie Hu Zhenmin Bao Xiaoli Hu The Caspase Homologues in Scallop <i>Chlamys farreri</i> and Their Expression Responses to Toxic Dinoflagellates Exposure Toxins caspase development paralytic shellfish toxin Zhikong scallop <i>Chlamys farreri</i> |
title | The Caspase Homologues in Scallop <i>Chlamys farreri</i> and Their Expression Responses to Toxic Dinoflagellates Exposure |
title_full | The Caspase Homologues in Scallop <i>Chlamys farreri</i> and Their Expression Responses to Toxic Dinoflagellates Exposure |
title_fullStr | The Caspase Homologues in Scallop <i>Chlamys farreri</i> and Their Expression Responses to Toxic Dinoflagellates Exposure |
title_full_unstemmed | The Caspase Homologues in Scallop <i>Chlamys farreri</i> and Their Expression Responses to Toxic Dinoflagellates Exposure |
title_short | The Caspase Homologues in Scallop <i>Chlamys farreri</i> and Their Expression Responses to Toxic Dinoflagellates Exposure |
title_sort | caspase homologues in scallop i chlamys farreri i and their expression responses to toxic dinoflagellates exposure |
topic | caspase development paralytic shellfish toxin Zhikong scallop <i>Chlamys farreri</i> |
url | https://www.mdpi.com/2072-6651/14/2/108 |
work_keys_str_mv | AT zhongchengwei thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT weiding thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT molili thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT jiaoxiashi thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT huizhenwang thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT yangruiwang thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT yuboli thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT yiqiangxu thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT jingjiehu thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT zhenminbao thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT xiaolihu thecaspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT zhongchengwei caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT weiding caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT molili caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT jiaoxiashi caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT huizhenwang caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT yangruiwang caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT yuboli caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT yiqiangxu caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT jingjiehu caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT zhenminbao caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure AT xiaolihu caspasehomologuesinscallopichlamysfarreriiandtheirexpressionresponsestotoxicdinoflagellatesexposure |